РЕШИТЕ Решить уравнение: а) 6х – 12 = 4х + 11; б) 6 – 8(х + 2) = 3 – 2х.
2 В футбольной секции первоначально занималось в 3 раза больше учеников, чем в баскетбольной. Когда в футбольную секцию поступило еще 9 учеников, а в баскетбольную – 33 ученика, то в секциях учеников стало поровну. Сколько учеников было в каждой секции сначала?
3 Решить уравнение: а)(12у - 30)(1,4 – 0,7у) = 0 б) 9х – (5х - 4) = 4х + 4.
ответ: 160 литров.
Объяснение:
"в четыре бидона разлили молоко. в первой бидон налили 30% всего молока, во второй 5/6 того, что в первый, в третий на 26 л меньше, чем в первый, А в четвертой на 10 л больше, чем во второй. Сколько литров молока разлили в четыре бидона".
***
1 бидон - 30% от всего молока.
Обозначим все молоко через х литров.
Тогда в 1 бидон налили 0,3х литров;
Во второй бидон налили 5/6 от 0,3х=(5/6)*0,3х=(1/4)х.
В третий бидон налили на 26литров меньше, чем в первый:
0,3х-26 литров.
В четвертый налили на 10 литров больше, чем во второй:
(1/4)х+10 литров.
Найдем сколько всего молока разлили по бидонам:
0,3х+(1/4)х+0,3х-26+(1/4)х+10=х;
0,3х+0,25х+0,3х-26+0,25х+10=x;
1,1х-26+10=x;
1,1х-16=х;
1,1х-х=16;
0,1х=16:
х=160 литров.
Проверим:
1 бидон - 0,3*160=48 литров.
2 бидон - 1/4*160= 40 литров.
3 бидон - 0,3*160-26=22 литра.
4 бидон - 0,25*160+10=50 литров.
Всего: 48+40+22+50=160 литров. Всё верно!
Берем производную:
y' = 10x
10x = 0
x = 0
Смотрим как ведет себя производная в районе этой точки
При x < 0 y' < 0 => исходная функция убывает на интервале (-бесконечность;0)
При x > 0 y' > 0 => исходная функция возрастает на интервале (0;+бесконечность)
Это значит, что наименьшее значение на отрезке [-1;2] функция достигает при x = 0, то есть y(0)=15 - наименьшее значение
Свое наибольшее значение функция достигает на одном из концов отрезка:
y(-1) = 20
y(2)=35 - наибольшее значение функции на отрезке [-1;2\
Объяснение: