Сначала рассмотрим вариацию, что 2, 3 и даже все 4 кошки весят одинаково. В первом случае, при взвешивании попарно, имеется всего три разных веса и три вариации взвешивания, во-втором два разных веса и две вариации, во-втором один вес и только одна вариация взвешивания.
Раз у нас не 1,2,3 разных вариаций взвешивания, а целых пять: 8кг,9кг,10кг,12кг,13кг - то все кошки имеют разный вес.
Если у кошек 4 разных веса то при каком единственном варианте возможны два разных взвешивания двумя одинаковыми весами? 8кг,8кг. a+b = c+d = 8, тоесть в первом варианте взвешивалась первая и вторая, во втором варианте 3 и 4. Иначе если бы взвешивались в обоих случаях только три кошки a+b = a+c, получалось бы что вторая и третья кошка равны по весу, но вначале мы доказали что это не возможно.
Тоесть считаем доказанным, что a+b = c+d = 8
Т.к. все кошки разного веса, то допустив, что а весит меньше b и с меньше d, то справедливо a < b и с < d;
А значит a < 8/2 < 4; c < 4;
Значит при взвешивании попарно а и с, должно быть a + c < 8;
Но остальные взвешивания показали другую массу 9кг,10кг,12кг,13кг, значит это не возможно.
|x + 4| = 6 - |x|
Нули подмодульных выражений: x = -4; 0
1) x ∈ (-∞; -4]
-x - 4 = 6 + x
2x = -10
x = -5
2) x ∈ (-4; 0]
x + 4 = 6 + x
4 = 6 - неверное равенство ⇒ x ∈ ø
3) x ∈ (0; +∞)
x + 4 = 6 - x
2x = 2
x = 1
ответ: x = -5; 1.
2. |x - 4| < |3x|
|x - 4| - |3x| < 0
Нули подмодульных выражений: x = 0; 4
1) x ∈ (-∞; 0]
-x + 4 + 3x < 0
2x < -4
x < -2
2) x ∈ (0; 4]
-x + 4 - 3x < 0
4x > 4
x > 1, с учётом условия x ∈ (1; 4]
3) x ∈ [4; +∞)
x - 4 - 3x < 0
2x > -4
x > -2, с учётом условия x ∈ [4; +∞)
Объединяя решения, получаем, что x ∈ (-∞; -2) U (1; +∞).
ответ: x ∈ (-∞; -2) U (1; +∞).
кошки обладают весом: a,b,c,d;
Сначала рассмотрим вариацию, что 2, 3 и даже все 4 кошки весят одинаково. В первом случае, при взвешивании попарно, имеется всего три разных веса и три вариации взвешивания, во-втором два разных веса и две вариации, во-втором один вес и только одна вариация взвешивания.
Раз у нас не 1,2,3 разных вариаций взвешивания, а целых пять: 8кг,9кг,10кг,12кг,13кг - то все кошки имеют разный вес.
Если у кошек 4 разных веса то при каком единственном варианте возможны два разных взвешивания двумя одинаковыми весами? 8кг,8кг. a+b = c+d = 8, тоесть в первом варианте взвешивалась первая и вторая, во втором варианте 3 и 4. Иначе если бы взвешивались в обоих случаях только три кошки a+b = a+c, получалось бы что вторая и третья кошка равны по весу, но вначале мы доказали что это не возможно.
Тоесть считаем доказанным, что a+b = c+d = 8
Т.к. все кошки разного веса, то допустив, что а весит меньше b и с меньше d, то справедливо a < b и с < d;
А значит a < 8/2 < 4; c < 4;
Значит при взвешивании попарно а и с, должно быть a + c < 8;
Но остальные взвешивания показали другую массу 9кг,10кг,12кг,13кг, значит это не возможно.
Тоесть задача не имеет решения