1)Найдем дискриминант квадратного уравнения D=b(кв)-4ac=3(кв)-4*1*(-28)=9+112=121 Так как дискриминант больше нуля, то уравнение имеет два действительных корня: x1=(-3-(корень)121)/2*1=(-3-11)/2=-14/2=-7 x2=(-3+(корень)121)/2*1=(-3+11)/2=8/2=4
2)Найдем дискриминант квадратного уравнения D=b(кв)-4ac=-2(кв)-4*2*(-8)=4+64=68 Так как дискриминант больше нуля, то уравнение имеет два действительных корня: x1=(2-(корень)68)/2*2=0,5-0,5*(корень)17~=-1,56155 x2=(2+(корень)68)/2*2=0,5+0,5*(корень)17~=2,56155
3)найдем дискриминант D=b(кв)-4ac=-5(кв)-4*1*6=25-24=1 Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня x1=(5-(корень)1)/2*1=(5-1)/2=4/2=2 x2=(5+(корень)1)/2*1=(5+1)/2=6/2=3 ax(кв)+bx+c=a(x-x1)(x-x2) Отсюда x(кв)-5x+6=(x-2)(x-3)
4)найдем дискриминант D=b(кв)-4ac=-1(кв)-4*(-6)*1=1+24=25 Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня x1=(1-(корень)25)/2*(-6)=(1-5)/-12=-4/-12=1/3 x2=(1+(корень)25)/2*(-6)=(1+5)/-12=6/-12=-1/2 ax(кв)+bx+с=a(x-x1)(x-x2) Отсюда -6x(кв)-x+1=-6(x-1/3)(x+1/2)
Sin2x=2sinx*cosx=-0.6 sinx*cosx=-0.3 sinx= -0.3/cosx; sin^2x=0.09/cos^2x теперь подставлю его выражение в основное тригонометрическое тождество sin^2x+cos^2x=1 получу .0.09/cos^2x+cos^2x=1 введу новую переменную t=cox^2x тогда 0.09/t+t=1 приводя все к общему знаменателю-в числителе получу 0.09+t^2=t t^2-t+0.09=0 D=1-4*0.09=1-0.36=0.64 t1=(1+0.8)/2=0.9 t2=(1-0.8)/2=0.1 сos^2x=0.9; cosx1=-3/√10; cos^2x=0.1; cosx2=-1/√10 sinx1=-0.3/cosx; sinx=-0.3/(-3/√10)=1/√10 sinx2=-0.3/(-1/√10)=0.3*√10 tgx1=sinx1/cosx1=(1/√10)/(-3/√10)=-1/3; ctgx1=-3 tgx2=sinx2/cosx2=0.3*√10/(-1/√10)=-3; ctgx2=-1/3
D=b(кв)-4ac=3(кв)-4*1*(-28)=9+112=121
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(-3-(корень)121)/2*1=(-3-11)/2=-14/2=-7
x2=(-3+(корень)121)/2*1=(-3+11)/2=8/2=4
2)Найдем дискриминант квадратного уравнения
D=b(кв)-4ac=-2(кв)-4*2*(-8)=4+64=68
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(2-(корень)68)/2*2=0,5-0,5*(корень)17~=-1,56155
x2=(2+(корень)68)/2*2=0,5+0,5*(корень)17~=2,56155
3)найдем дискриминант
D=b(кв)-4ac=-5(кв)-4*1*6=25-24=1
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(5-(корень)1)/2*1=(5-1)/2=4/2=2
x2=(5+(корень)1)/2*1=(5+1)/2=6/2=3
ax(кв)+bx+c=a(x-x1)(x-x2)
Отсюда x(кв)-5x+6=(x-2)(x-3)
4)найдем дискриминант
D=b(кв)-4ac=-1(кв)-4*(-6)*1=1+24=25
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(1-(корень)25)/2*(-6)=(1-5)/-12=-4/-12=1/3
x2=(1+(корень)25)/2*(-6)=(1+5)/-12=6/-12=-1/2
ax(кв)+bx+с=a(x-x1)(x-x2)
Отсюда -6x(кв)-x+1=-6(x-1/3)(x+1/2)
sinx*cosx=-0.3
sinx= -0.3/cosx; sin^2x=0.09/cos^2x
теперь подставлю его выражение в основное тригонометрическое тождество sin^2x+cos^2x=1
получу .0.09/cos^2x+cos^2x=1
введу новую переменную t=cox^2x
тогда 0.09/t+t=1
приводя все к общему знаменателю-в числителе получу
0.09+t^2=t
t^2-t+0.09=0
D=1-4*0.09=1-0.36=0.64
t1=(1+0.8)/2=0.9
t2=(1-0.8)/2=0.1
сos^2x=0.9; cosx1=-3/√10; cos^2x=0.1; cosx2=-1/√10
sinx1=-0.3/cosx; sinx=-0.3/(-3/√10)=1/√10
sinx2=-0.3/(-1/√10)=0.3*√10
tgx1=sinx1/cosx1=(1/√10)/(-3/√10)=-1/3; ctgx1=-3
tgx2=sinx2/cosx2=0.3*√10/(-1/√10)=-3; ctgx2=-1/3