cos 260° < 0, (260° - угол 3 четверти, где косинус отрицателен)
sin 190° < 0(190° - угол 3 четверти, где синус отрицателен).
Поэтому это выражение больше 0.
б)cos 350° * tg(-100°)
cos 350° > 0(350° - угол 4 четверти, где косинус положителен).
tg(-100°) = -tg 100° > 0(100° - угол 2 четверти, где тангенс отрицателен, да ещё минус)
Поэтому, значение выражения больше 0.
2
а)sin 230° < 0, так как 230° - угол 3 четверти, где синус отрицателен.
б)cos 170° < 0, так как 170° - угол 2 четверти, где косинус отрицателен
в)tg 330° < 0, так как 330° - угол 4 четверти, где тангенс отрицателен
г)ctg(-220°) = -ctg 220° < 0, так как само выражение ctg 220° > 0(угол относится к 3 четверти, где котангенс положителен), да ещё минус прибавили.
д)В знаменателе у нас стоит постоянное число 8, так что знак выражения будет зависеть только от числителя. Достаточно проверить лишь одно из выражений, например, cos 3:
cos(3 * 57) = cos 171° < 0, (171 - угол 2 четверти, где косинус отрицателен). Поэтому всё выражение заведомом меньше нуля
Пусть x- скорость лодки в стоячей воде y- cкорость течения реки Тогда, x+y -скорость лодки по течению x-y - скорость лодки против течения Тогда, 16/x+y(ч)время за которое проплывает лодка 16 км по течению 16/x-y(ч) 16 км против течения А по условию по течению лодка проплывает на 6 часов быстрее чем против значит можно составить уравнение: 16/x-y -16/x+y =6 Также по условию известно ,что скорость лодки на 2 км больше скорости течения реки Состав им второе уравнение: x-y=2 Пешим полученную систему уравнений : Сперва упрастим первое уравнение избавившись от знаменателя ,получим : 32y=6x^2-6y^2 Затем выразим x из второго уравнения ,получим x=y+2 и подставим в первое: 32y=6*(2+y)^2-6y 32y=24+24y+6y^2-6y^2 8y=24 y=3 X=3+2 X=5 ответ :скорость лодки 5 км/ч скорость реки 3км/ч
1
a)cos 260° * sin 190°
cos 260° < 0, (260° - угол 3 четверти, где косинус отрицателен)
sin 190° < 0(190° - угол 3 четверти, где синус отрицателен).
Поэтому это выражение больше 0.
б)cos 350° * tg(-100°)
cos 350° > 0(350° - угол 4 четверти, где косинус положителен).
tg(-100°) = -tg 100° > 0(100° - угол 2 четверти, где тангенс отрицателен, да ещё минус)
Поэтому, значение выражения больше 0.
2
а)sin 230° < 0, так как 230° - угол 3 четверти, где синус отрицателен.
б)cos 170° < 0, так как 170° - угол 2 четверти, где косинус отрицателен
в)tg 330° < 0, так как 330° - угол 4 четверти, где тангенс отрицателен
г)ctg(-220°) = -ctg 220° < 0, так как само выражение ctg 220° > 0(угол относится к 3 четверти, где котангенс положителен), да ещё минус прибавили.
д)В знаменателе у нас стоит постоянное число 8, так что знак выражения будет зависеть только от числителя. Достаточно проверить лишь одно из выражений, например, cos 3:
cos(3 * 57) = cos 171° < 0, (171 - угол 2 четверти, где косинус отрицателен). Поэтому всё выражение заведомом меньше нуля