Так как тортики имеют постоянную высоту, то вместо рассмотрения объемов буем рассматривать соответствующие площади оснований.
Площадь основания тортика радиуса R:
Тогда, площадь основания одного Машиного куска:
Рассмотрим Дашин кусок (на картинке). Вертикальной и горизонтальной прямой разобьем его на 4 равные части и рассмотрим одну из них. Проведем еще одну прямую так, чтобы эта часть разделилась на сектор и прямоугольные треугольник.
Рассмотрим полученный сектор. Пусть α - угол между радиусами, образующими сектор. Тогда, площадь сектора:
Рассмотрим прямоугольный треугольник. Зная, что накрест лежащие углы при параллельных прямых равны, получим, что один из острых углов этого треугольника равен α. Выразим через этот угол и известный радиус катеты треугольника:
Площадь прямоугольного треугольника:
Тогда, запишем сумму, представляющую площадь основания четверти кусочка Даши:
Отсюда площадь основания кусочка Даши:
По условию куски Маши и Даши должны быть одинаковы. значит:
Для решения уравнения построим график в Microsoft Excel (картинка).
По графику определим, что равенство выполняется при .
График при напоминает прямую, так как в данном случае имеем место быть первый замечательный предел.
Действительно, можно считать, что рассматриваемый угол α мал. Тогда: в соответствии с первым замечательным пределом. Тогда от имеющегося уравнения можно перейти к более простому:
Искомое расстояние от оси симметрии соответствует уже вводившейся величине d:
По той же причине синус малого аргумента можно заменить самим этим аргументом. Получим:
В частности, для практических целей выполненные приближенные допущения вполне допустимы и удачны.
Вернемся к полученному ранее уравнению:
Заметим, что информация о том, что Маша разрезала свой тортик на 8 частей, сосредоточена в знаменателе правой части. Поэтому, если изначально Маша разрезала тортик на N частей, то проведя аналогичные рассуждения мы получим уравнение вида:
Так как тортики имеют постоянную высоту, то вместо рассмотрения объемов буем рассматривать соответствующие площади оснований.
Площадь основания тортика радиуса R:
Тогда, площадь основания одного Машиного куска:
Рассмотрим Дашин кусок (на картинке). Вертикальной и горизонтальной прямой разобьем его на 4 равные части и рассмотрим одну из них. Проведем еще одну прямую так, чтобы эта часть разделилась на сектор и прямоугольные треугольник.
Рассмотрим полученный сектор. Пусть α - угол между радиусами, образующими сектор. Тогда, площадь сектора:
Рассмотрим прямоугольный треугольник. Зная, что накрест лежащие углы при параллельных прямых равны, получим, что один из острых углов этого треугольника равен α. Выразим через этот угол и известный радиус катеты треугольника:
Площадь прямоугольного треугольника:
Тогда, запишем сумму, представляющую площадь основания четверти кусочка Даши:
Отсюда площадь основания кусочка Даши:
По условию куски Маши и Даши должны быть одинаковы. значит:
Для решения уравнения построим график в Microsoft Excel (картинка).
По графику определим, что равенство выполняется при .
График при напоминает прямую, так как в данном случае имеем место быть первый замечательный предел.
Действительно, можно считать, что рассматриваемый угол α мал. Тогда: в соответствии с первым замечательным пределом. Тогда от имеющегося уравнения можно перейти к более простому:
Искомое расстояние от оси симметрии соответствует уже вводившейся величине d:
По той же причине синус малого аргумента можно заменить самим этим аргументом. Получим:
В частности, для практических целей выполненные приближенные допущения вполне допустимы и удачны.
Вернемся к полученному ранее уравнению:
Заметим, что информация о том, что Маша разрезала свой тортик на 8 частей, сосредоточена в знаменателе правой части. Поэтому, если изначально Маша разрезала тортик на N частей, то проведя аналогичные рассуждения мы получим уравнение вида:
1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186