Теперь мы должны определить, при каких условиях x=0, Решаем уравнение: У нас либо "x=0", либо "3-x=0; x=3" Чертим прямую и отмечаем точки "0" и "3", у нас получилось 3 промежутка, это (-∞;0);(0;3);(3;+∞), определяем знаки на этих промежутках. Берём число больше 3 и подставляем в уравнение вместо x (3*4-4*4=12-16=-4), знак на промежутке (3;+∞) будет отрицательный, на участке (0;3) положительный, а на (-∞;0) отрицательный. Нам нужно найти участок на котором x>0, этим участком будет являться (0;3) ответ: X∈(0;3)
Функция у = х² + 4х - 12
График функции - квадратная парабола веточками вверх
Найдём характерные точки этой параболы.
1) Точка пересечения с осью Оу: х = 0; у = -12;
2) точки пересечения с осью Ох: у = 0
х² + 4х - 12 = 0
D = 4² - 4 · (-12) = 64
√D = 8
x₁ = (-4 - 8)/2 = -6
x₂ = (-4 + 8) = 2
Получили две точки (-6; 0) и (2; 0)
3) найдём координаты вершины С параболы С(m; n)
m = - b/2a = -4/2 = -2
n = y(-2) = (-2)² + 4 · (-2) - 12 = -16
C(-2; -16)
По найденным точкам строим параболу (смотри прикреплённый рисунок).
По графику находим
а) у > 0 при х ∈ (-∞; -6)∪(2; +∞); y < 0 при х ∈ (-6; 2)
б) у↑ при х ∈ (-2; +∞); у↓ при х ∈ (-∞; -2)
в) у наим = у(-2) = -16; наибольшего значения не существует.
Теперь мы должны определить, при каких условиях x=0,
Решаем уравнение:
У нас либо "x=0", либо "3-x=0; x=3"
Чертим прямую и отмечаем точки "0" и "3", у нас получилось 3 промежутка, это (-∞;0);(0;3);(3;+∞), определяем знаки на этих промежутках. Берём число больше 3 и подставляем в уравнение вместо x (3*4-4*4=12-16=-4), знак на промежутке (3;+∞) будет отрицательный, на участке (0;3) положительный, а на (-∞;0) отрицательный. Нам нужно найти участок на котором x>0, этим участком будет являться (0;3)
ответ: X∈(0;3)