Решение Пусть первое число будет равно х, и пусть оно на у меньше второго числа, тогда второе число получается х+у, тогда третье число получается второе число плюс у, т.е х+у+у = х+2у. Так как квадрат второго числа на 36 больше произведения первого и третьего чисел, то составляем уравнение: (х+у)² - 36 = х * (х+2у) х²+2ху+у²-36=х²+2ху у²=36 у=6 или -6, но так как каждое следующее число больше предыдущего, то -6 не подходит. Значит у=6, т.е. первое число х, второе х+6, третье х+2*6=х+12. Таким образом наибольшее число больше чем наименьшее на 12, т.е. (х+12)-х=12. ответ: 12
tgx=ctgx
tgx=1/tgx
tg^2(x)=1 =>tgx=1=> x=arctg 1+Пn,n принадлежит => x= п/4+пn,n принадлежит Z
S={п/4+пn|n принадлежит Z}
3cos2x+sin^2(x)+5sinxcosx=0
3cos2x+sin^2(x)+5sinxcosx=0
3(2cos^2(x)-1)+sin^2(x)+5sinxcosx=0
6cos^2(x)-3sin^2(x)-3cos^2(x)+sin^2(x)+5sinxcosx=0|:cos^2(x) неравный 0
6-3tg^2(x)-3+tg^2(x)+5tgx=0
Пусть t=tgx,тогда
2t^2-5t-3=0
D=25-4*2*(-3)=25+24=49
t=(5-7)/4 t=-1/2 tgx=-1/2 x=-arctg1/2+Пn,n принадлежит Z
или или или или
t=(5+7)/4 t=3 tgx=3 x=arctg3+Пk,k принадлежит Z
Пусть первое число будет равно х, и пусть оно на у меньше второго числа, тогда второе число получается х+у, тогда третье число получается второе число плюс у, т.е х+у+у = х+2у. Так как квадрат второго числа на 36 больше произведения первого и третьего чисел, то составляем уравнение:
(х+у)² - 36 = х * (х+2у)
х²+2ху+у²-36=х²+2ху
у²=36
у=6 или -6, но так как каждое следующее число больше предыдущего, то -6 не подходит.
Значит у=6, т.е. первое число х, второе х+6, третье х+2*6=х+12.
Таким образом наибольшее число больше чем наименьшее на 12, т.е. (х+12)-х=12.
ответ: 12