Из первого уравнения вырим Х: Х=(-4-y-z)/3 Подставим Х который выразил из первого уравнение во второе и после этого выразим У: -4-y-z+5y+6z=36. 4y+5z=40. y=(40-5z)/4 Теперь выраженый Х и У подставим в трерье уравнение и найдем z: (-4-(40-5z)/4-z)/3-(40-5z)-2z=-19. -4/3-10/3+5z/12-z/3-40+5z-2z=-19. 5z/12-z/3+5z-2z=-19+4/3+10/3+40. 35z/12=77/3. Z=77×12/(3×35). Z=8,8 Теперь известный z подставим в уравнение где выражен У: У=(40-5×8,8)/4=-1 Теперь известный У и Z подставим в первое уравнение где выражен Х: х=(-4+1-8.8)/3=-3,933~-4 ответ х=-4, у=-1, z=8,8
Y=-3x²+2x-4 при х=0 y=-4 корней нет поскольку дискриминант = b²-4ac=-44< 0 - парабола лежит под осью х. y'=-6x+2 -6x+2=0 6x=2 x=1/3 x∈(-∞; 1/3) y'> 0 возрастает x∈(1/3; ∞) убывает в точке х=1/3 максимум у=-3*1/9+2/3-4=-3 1/3 область определения r, ни четная ни нечетная. y''=-6 точек перегиба нет, выпукла вверх.