Примем время наполнения бассейна через первую трубу за х, а время слива всей воды из бассейна через вторую трубу за у. На основании задания составим систему из двух уравнений. {у - х = 1, {(1/x) - (1/y) = 1/30. Применим подстановку у = х + 1 во второе уравнение. (1/х) - (1/(х + 1)) = 1/30. Приведём к общему знаменателю. 30х + 30 - 30х = х(х + 1), х² + х - 30 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=1^2-4*1*(-30)=1-4*(-30)=1-(-4*30)=1-(-120)=1+120=121;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√121-1)/(2*1)=(11-1)/2=10/2=5;x₂=(-√121-1)/(2*1)=(-11-1)/2=-12/2=-6 (отрицательный корень отбрасываем).
ответ: время наполнения пустого бассейна через первую трубу равно 5 часов.
Найдём производную :
Приравняем производную к нулю:
Возведём обе части в квадрат:
(x² - 6x + 9)(x² - 14x + 58) = (x² - 14x + 49)(x² - 6x + 13)
x⁴ - 14x³ + 58x² - 6x³ + 84x² - 348x + 9x² - 126x + 522 = x⁴ - 6x³ + 13x² - 14x³ + 84x² - 182x + 49x² - 294x + 637
67x² - 474x + 522 = 62x² - 476x + 637
5x² + 2x - 115 = 0
D = (-1)² - 5 * (- 115) = 1 + 575 = 576 = 24²
x₁ = (- 1 + 24)/5 = 4,6
x₂ = (- 1 - 24)/5 = - 5
+ - +
________________________
- 5 4,6
min
На основании задания составим систему из двух уравнений.
{у - х = 1,
{(1/x) - (1/y) = 1/30.
Применим подстановку у = х + 1 во второе уравнение.
(1/х) - (1/(х + 1)) = 1/30.
Приведём к общему знаменателю.
30х + 30 - 30х = х(х + 1),
х² + х - 30 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-30)=1-4*(-30)=1-(-4*30)=1-(-120)=1+120=121;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√121-1)/(2*1)=(11-1)/2=10/2=5;x₂=(-√121-1)/(2*1)=(-11-1)/2=-12/2=-6 (отрицательный корень отбрасываем).
ответ: время наполнения пустого бассейна через первую трубу равно 5 часов.