В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
keklol291
keklol291
05.09.2021 05:08 •  Алгебра

с решением
нужно очень


с решением нужно очень

Показать ответ
Ответ:
29Vladislava13
29Vladislava13
08.11.2022 23:16
y= \sqrt{ x^{2} -6x+13}+ \sqrt{ x^{2} -14x+58}
Найдём производную :
y'=( \sqrt{ x^{2} -6x+13} )'+( \sqrt{ x^{2} -14x+58})'= \frac{1}{2 \sqrt{ x^{2} -6x+13} }**( x^{2} -6x+13)'+ \frac{1}{2 \sqrt{ x^{2} -14x+58} }*( x^{2} -14x+58)'= \frac{2x-6}{2 \sqrt{ x^{2} -6x+13} } ++ \frac{2x-14}{2 \sqrt{ x^{2} -14x+58} }= \frac{x-3}{ \sqrt{ x^{2} -6x+13} } + \frac{x-7}{ \sqrt{ x^{2} -14x+58} }
Приравняем производную к нулю:
\frac{x-3}{ \sqrt{ x^{2} -6x+13} }+ \frac{x-7}{ \sqrt{ x^{2} -14x+58} }=0\\\\(x-3)* \sqrt{ x^{2} -14x+58}=-(x-7)* \sqrt{ x^{2} -6x+13}
Возведём обе части в квадрат:
(x² - 6x + 9)(x² - 14x + 58) = (x² - 14x + 49)(x² - 6x + 13)
 x⁴ - 14x³ + 58x² - 6x³ + 84x² - 348x + 9x² - 126x + 522 = x⁴ - 6x³ + 13x² - 14x³ + 84x² - 182x + 49x² - 294x + 637
67x² - 474x + 522 = 62x² - 476x + 637
5x² + 2x - 115 = 0
D = (-1)² - 5 * (- 115) = 1 + 575 = 576 = 24²
x₁ = (- 1 + 24)/5 = 4,6
x₂ = (- 1 - 24)/5 = - 5
   +             -                     +
________________________
         - 5               4,6
                            min
y _{min} ^{2} = (\sqrt{ x^{2} -6x+13}+ \sqrt{ x^{2} -14x+58} ) ^{2}= (21,16-27,6+13++2 \sqrt{(21,16-27,6+13)(21,16-64,4+58)}+21,16-64,4+58==6,56+2 \sqrt{96,8256} +14,76=21,32+2*9,84=41\\\\y _{min}= \sqrt{41}
0,0(0 оценок)
Ответ:
Dashon2000
Dashon2000
08.12.2022 16:33
Примем время наполнения бассейна через первую трубу за х, а время слива всей воды из бассейна через вторую трубу за у.
На основании задания составим систему из двух уравнений.
{у - х = 1,
{(1/x) - (1/y) = 1/30.
Применим подстановку у = х + 1 во второе уравнение.
(1/х) - (1/(х + 1)) = 1/30.
Приведём к общему знаменателю.
30х + 30 - 30х = х(х + 1),
х² + х - 30 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-30)=1-4*(-30)=1-(-4*30)=1-(-120)=1+120=121;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√121-1)/(2*1)=(11-1)/2=10/2=5;x₂=(-√121-1)/(2*1)=(-11-1)/2=-12/2=-6 (отрицательный корень отбрасываем).

ответ: время наполнения пустого бассейна через первую трубу равно 5 часов.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота