Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
тогда стоимость одной акции = 110000 / х (р.)
110000 / (х-20) = (110000 / х) + 50
110000 / (х-20) - (110000 / х) = 50
110000 * (1 / (х-20) - 1 / х) = 50
(х-х+20) / (х(х-20)) = 5 / 11000
х(х-20) = 44000
х² - 20х - 44000 = 0 44000 = 440 * 100 = 220 * 200
по т.Виета корни (220) и (-200)
ответ: предприниматель приобрел 220 акций.
ПРОВЕРКА:
стоимость одной акции = 110000 / 220 = 1000 / 2 = 500 (р.)
стоимость одной акции через год = 550 (р.)
110000 / 550 = 1000 / 5 = 200 акций ---это на 20 акций меньше))