В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
иришка19911
иришка19911
23.04.2020 03:51 •  Алгебра

Sin2xcosx+cos2xsinx=1,как из этого уравнения, получили это sin3x=1.обьясните, )

Показать ответ
Ответ:
Hhh2341
Hhh2341
05.10.2020 02:49
sin2xcosx+cos2xsinx=1
Левая часть является развернутой формулой суммы аргументов
(sin(x+y)=sinxcosy+cosxsiny)
Заново свернём её:
sin2xcosx+cos2xsinx=sin(2x+x)=sin(3x)
sin3x=1
Дальше можно решать уравнение.
sin3x=1
3x=пи/2+2пи*n, n∈Z
x=пи/6+2пиn/3, n∈Z
0,0(0 оценок)
Ответ:
Kola2004kola
Kola2004kola
05.10.2020 02:49
Используем формулу представления произведения sinacob в виде суммы:
sinacosb=(sin(a-b)+sin(a+b))/2:
sin2xcosx+cos2xsinx=1
((sin(2x-x)+sin(2x+x))/2)+((sin(x-2x)+sin(x+2x))/2)=1
(sinx+sin3x+sin(-x)+sin3x)/2=1
sin(-x)=-sinx =>
(sinx-sinx+sin3x+sin3x)/2=1
(2sin3x)/2=1
sin3x=1

Или:
sin2xcosx+cos2xsinx=1
sin(2x+x)=1
sin3x=1
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота