Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:
\[\frac{sin x * cos x}{16} = 0\]
Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):
\[2sin x * cos x = 0\]
По формулам тригонометрии мы знаем, что:
\[2sin x * cos x = sin 2x\]
Запишем наше красивое уравнение:
\[sin 2x = 0\]
А теперь его решим.
Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:
\[sin x = a\]
\[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[sin 2x = 0\]
Но у нас будет не просто х, а двойной:
\[2x = (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]
Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[sin 2x = 0 \]
\[2x = \pi k, k \in \mathbb{Z}\]
Чтоб найти х надо каждый член поделить на два и из этого получим следующее:
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных)
Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит
Если 0<x<1то
для каждой степени
а значит л.ч. <
--(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1
иначе для суммы первых натуральных чисел справедлива формула
)
При x=1
Получаем равенство 1+2+...+20=210
x=1 - решение
и При x>1 получаем что л.ч. больше правой так как
и л.ч. >
ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
\[\frac{sin x}{4} * \frac{cos x}{4} = 0\]
Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:
\[\frac{sin x * cos x}{16} = 0\]
Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):
\[2sin x * cos x = 0\]
По формулам тригонометрии мы знаем, что:
\[2sin x * cos x = sin 2x\]
Запишем наше красивое уравнение:
\[sin 2x = 0\]
А теперь его решим.
Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:
\[sin x = a\]
\[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[sin 2x = 0\]
Но у нас будет не просто х, а двойной:
\[2x = (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]
Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[sin 2x = 0 \]
\[2x = \pi k, k \in \mathbb{Z}\]
Чтоб найти х надо каждый член поделить на два и из этого получим следующее:
\[x = \frac{\pi k}{2}, k \in \mathbb{Z}\]
ответ: x = \frac{\pi k}{2}, k \in \mathbb{Z}