В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
SOV20
SOV20
05.08.2022 10:10 •  Алгебра

Сравните числа и выберите подходящие знаки.(больше ,меньше или равно )

2,7 .10^5 1,95 · 10^5

4,1 · 10^–7 5 · 10^–7

3,6 · 10^8 9,9 · 10^7

7,1 · 10^–6 2,2 · 10^–5

Показать ответ
Ответ:
ЧерепашкаВася
ЧерепашкаВася
11.05.2021 22:04

23.12.20 :: 13:04:19 Выбор языка:

Russian

Добро Гость выберите Вход или Регистрация

В ПАТЕНТОВАНИИ СТАТЬИ И ПУБЛИКАЦИИ Научно-техническая библиотекаНаучно-техническая библиотека SciTecLibrary Правила форума

Отправить

Научно-технический форум SciTecLibrary › Точные науки и дисциплины › Дебаты по Теории Относительности Эйнштейна › Неинвариантность Уравнений Максвелла

(Модераторы: peregoudovd, kkdil, E-Eater)

‹ Предыдущая тема | Следующая тема ›

Страниц: 1 2 3 4 ... 6Послать Тему Печать

Неинвариантность Уравнений Максвелла (Прочитано 14867 раз)

meandr

Ветеран форума

***

Вне Форума

Сообщений: 3827

КОСМОполит

Re: Неинвариантность Уравнений Максвелла

ответ #50 - 21.02.17 :: 12:42:22 pop писал(а) 21.02.17 :: 10:15:30:

ответьте ещё раз. Если на опыте измерены величины, которые при подстановке в уравнение дают истинность уравнения, то какие могут быть "трактовки"?

Если в это же уравнение ввести коэффициент в одно из ненулевых слагаемых, то уравнение не останется истинным. И никакими "трактовками" это не исправить.

Отвечу еще раз - первый на этой странице и последний, если не поймете (что скорее всего).

1. В уравнении напряженности (9) п.600 Трактата, составленном для ОБЩЕГО случая движущейся системы, предусмотрен "составной" скалярный потенциал

$\psi+\psi'$

где $\psi$ - обычный статический "кулоновский" потенциал - "собственный" потенциал поля заряда

$\psi'=\vec v \vec A$ - конвективный кинетический потенциал.

...

В современных обозначениях уравнение напряженности (9) в Трактате Максвелла

$\vec E=-\nabla\varphi-\nabla(\vec v \vec A)-\frac{\partial \vec A}{\partial t}$.

Это уравнение не во всех случаях адекватно опытам.

Поэтому

2. В современной ортодоксально-релятивистской теории используется раннее эфирное уравнение напряженности БЕЗ явного разбиения скалярного потенциала на "собственный" и конвективный потенциалы

$\vec E=-\nabla\varphi-\frac{\partial \vec A}{\partial t}$,

хотя наличие такого разделения с конвективным потенциалом неявно подразумевается преобразованиями Лоренца для потенциалов

В таком виде уравнения становятся адекватными опытам - но только в релятивистской трактовке понятий пространства и времени.

3. В классическом представлении пространства и времени уравнение Трактата с наличием конвективного потенциала становится адекватным только с коэффициентом 1/2 и определении вмп А как импульса движущегося поля "собственного" потенциала $\vec A=\varphi \vec v/c^2$

0,0(0 оценок)
Ответ:
Sahsa65432
Sahsa65432
31.03.2022 10:48
Если ты не умеешь применять теорему виета, то пиши в комментарях, я научу x²-8x+7 > 0 (х-1)(х-7) > 0 х € (-∞ ; 1 )( 7 ; +∞) x²+3x-54 < 0 (х+9)(х-6) < 0 х € ( -9 ; 6 ) 1/2x²+0,5x-1 > 0 x²+ x – 2 > 0 (х-1)(х+2) > 0 х € (-∞ ; -2 )( 1 ; +∞) 5x²+ 9,5x-1 < 0 10х²+19х–2 < 0 (х-1/10)(х+20/10)< 0 х € (-2 ; 0,1 ) -x²-3x+4> 0 x²+3x–4> 0 (х+4)(х-1)> 0 х € (-∞ ; -4 )( 1 ; +∞) -8x²+17x-2 ≤ 0 8x²-17x+2 ≤ 0 (х-16)(х-1) ≤ 0 х € [ 1 ; 16 ] дальше лень печатать (-∞ ; 3 )( 3 ; +∞) -12 нет корней (-∞ ; +∞) (-∞ ; 0,5 )( 0,5 ; +∞) нет корней
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота