Обозначим исходное число через XYZ. Причем что бы соответствие было полным, нужно учесть разряды для каждой неизвестной (сотни, десятки, единицы). В итоге наше исходное число примет вид: 100X+10Y+Z. Теперь с учетом вышесказанного запишем условие в нашем виде, получим: 100X+10Y+Z-(100Z+10Y+Х)=396 100Y+10Х+Z-(100Х+10Y+Z)=180 X+Y+Z=13 Мы получили систему из трех неизвестных и трех уравнений, ее можно решить. 100X+10Y+Z-100Z-10Y-Х=396 100Y+10Х+Z-100Х-10Y-Z=180 X+Y+Z=13
99X-99Z=396 90Y-90Х=180 X+Y+Z=13
X-Z=4 выразим Z=Х-4 Y-Х=2 выразим Y=Х+2 X+Y+Z=13 Подставим Z и Y в последнее выражение Х+Х+2+Х-4=13, 3Х=15, Х=5 Z=Х-4=5-4=1 Y=Х+2=5+2=7 Исходное число 571.
100X+10Y+Z-(100Z+10Y+Х)=396
100Y+10Х+Z-(100Х+10Y+Z)=180
X+Y+Z=13
Мы получили систему из трех неизвестных и трех уравнений, ее можно решить.
100X+10Y+Z-100Z-10Y-Х=396
100Y+10Х+Z-100Х-10Y-Z=180
X+Y+Z=13
99X-99Z=396
90Y-90Х=180
X+Y+Z=13
X-Z=4 выразим Z=Х-4
Y-Х=2 выразим Y=Х+2
X+Y+Z=13
Подставим Z и Y в последнее выражение
Х+Х+2+Х-4=13,
3Х=15, Х=5
Z=Х-4=5-4=1
Y=Х+2=5+2=7
Исходное число 571.
0= 0К +В,отсюда, В=0
-8= 2к+0
К=-8/2=-4
у= - 4 *х
Точно также для второго
-1= 2К +В
-3 = -1К +В
домножим на (-1) первое уравнение
1= -2к - В
-3= -1к+В
сложим эти 2 уравнения
-2 = -3к
К=-2/ -3 = 2/3
-1=2/3 *2 +В
4/3 +В = -1
В= -1-4/3= -2 целых 1/3
у= 2/3 *х - 2 целых 1/3