В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
макс3095
макс3095
13.03.2023 09:00 •  Алгебра

Сумма двух чисел равна 1,82, причем первое больше второго на 8,86. Найти эти числа.

Показать ответ
Ответ:
ЮлияСергеевна2
ЮлияСергеевна2
19.04.2023 12:46
1.найти ООФ:
D(y)=(0;+∞)
2.определить точки пересечения графика ф-ции с осями координат:
Если y=0 то, lnx/x=0     lnx=0   x=1  (1;0)
3. четность,нечетность,периодичность:
ф-ции ни четная, ни нечетная т.к., х не будет принимать отрицательные значения. Не является периодической.
4.Определим точки возможного экстремума:
f'(x)=(lnx/x)'=((1/x)*x-lnx)/x2=(1-lnx)/x2
приравняем ее к нулю.
(1-lnx)/x2=0    1-lnx=0    -lnx=-1    lnx=1    x=e -критическая точка.
5. определим точки возможного перегиба, для этого найдем вторую производную:
f''(y)=((1-lnx)/x2)'=((-1/x)*x2-(1-lnx)*2x)/x4=(-x-2x*(1-lnx))/x4=(-x-2x+2xlnx)/x4=(-x*(3-2lnx))/x4=(2lnx-3)/x3
(2lnx-3)/x3=0      2lnx-3=0     2lnx=3    lnx=3/2   x=e3/2
6. найдем промежутки возрастания и убывания, точки экстремума,промежутки выпуклости и точки перегиба. результаты запишем в виде таблицы:                                       
  x  | (-∞;e) | e  | (e;+∞) |
f'(x) |      +   |     |       -    |
f''(x)|      -    |     |       +   |
f(x) |      ↗    |max|       ↘   |
0,0(0 оценок)
Ответ:
OlegJexLP
OlegJexLP
06.12.2022 07:33

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – Область определения функции. Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций, где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на  (множестве всех действительных чисел). За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.

Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной, навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс», для которых существуют значения «игреков». Рассмотрим условный пример:

Объяснение:

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота