Комментарий ко 2-му примеру: корни уравнения - точки пересечения графика параболы с осью OX. Если таких точек нет - график не пересекает эту ось, а значит всегда находится сверху (учитывая, что ветви параболы направлены вверх в данном случае).
Комментарий к 3-му примеру: Разделим выражение на -1, получим:
x²-10x+25 = 0. Слева - формула сокращённого умножения, а именно - квадрат разности. Он сворачивается до выражения " (x-5)² = 0 ". Если выражение в квадрате равно нулю, то и простое выражение тоже равно нулю, значит:
1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Решение на фото.
Объяснение:
Комментарий ко 2-му примеру: корни уравнения - точки пересечения графика параболы с осью OX. Если таких точек нет - график не пересекает эту ось, а значит всегда находится сверху (учитывая, что ветви параболы направлены вверх в данном случае).
Комментарий к 3-му примеру: Разделим выражение на -1, получим:
x²-10x+25 = 0. Слева - формула сокращённого умножения, а именно - квадрат разности. Он сворачивается до выражения " (x-5)² = 0 ". Если выражение в квадрате равно нулю, то и простое выражение тоже равно нулю, значит:
x - 5 = 0, откуда x = 5.
1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое