По теореме Пифагора x^2=y^2+z^2, т.е. квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, а у нас получается 2 равных прямоугольных треугольника.
Тогда выражаем
x^2=(x-6)^2+(x-3)^2
По формуле сокращённого умножения получаем
x^2= x^2-12x+36 + x^2-6x+9
Переносим x^2 в правую сторону уравнения и сокращаем остальное
0=x^2-18x+45
Решаем как простое квадратное уравнение
D+18^2-4*45=144=12^2
x1=(18+12):2=15
x2=(18-12):2=3
Значит гипотенуза равна 15 либо 3. Предположим, что она равна 3, тогда вторая сторона равно 0, т.к. по условию она на 3 меньше гипотенузы, а она не может быть равна 0, значит гипотенуза равна 15. Из неё вычисляем обе стороны:
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
ответ: 42см
Объяснение:
Диагональ будет x
По теореме Пифагора x^2=y^2+z^2, т.е. квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, а у нас получается 2 равных прямоугольных треугольника.
Тогда выражаем
x^2=(x-6)^2+(x-3)^2
По формуле сокращённого умножения получаем
x^2= x^2-12x+36 + x^2-6x+9
Переносим x^2 в правую сторону уравнения и сокращаем остальное
0=x^2-18x+45
Решаем как простое квадратное уравнение
D+18^2-4*45=144=12^2
x1=(18+12):2=15
x2=(18-12):2=3
Значит гипотенуза равна 15 либо 3. Предположим, что она равна 3, тогда вторая сторона равно 0, т.к. по условию она на 3 меньше гипотенузы, а она не может быть равна 0, значит гипотенуза равна 15. Из неё вычисляем обе стороны:
15-6=9 15-3=12
И по формуле вычисляем периметр:
2*9+2*12=18+24=42
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.