У НАС СОЧ ПО АЛГЕБРЕ
1
Соотнесите квадратное уравнение с его видом.
А) х2 -8х-1=0 1.неполное квадратное уравнение
Б) х-10х2 -8=0 2.приведенное квадратное уравнение
В)– 2х2 + 5х = 0 3.полное квадратное уравнение
2
Решите уравнение: х2−11|х|−12=0
32
4
3
6 РО [ ] Дано уравнение:
2/x-5-4/x+5=3/x²-25
А) Укажите область допустимых значений уравнения;
Б) Приведите рациональное уравнение к целому уравнению;
В) Найдите решения рационального уравнения.
1) 1.1 По классической формуле DC*AD. DC=DK+KC=30+4=34. S=34*6=204 см²
1.2 Сначала найти площадь ADKM (1) и прибавить площадь MKCB (2).
S(1)=AD*DK=6*30=180 см² S(2)=MK*KC (MK=BC=AD по св-ву прямоугольника) S(2)=4*6=24 см² S=S(1)+S(2)=180+24=204 см²
2) 2.1 Проведём линию между A и К, получим прямоугольный треугольник. Тогда расстояние АK=\begin{gathered}\sqrt{AD^{2}+DK^{2} } \\\end{gathered}
AD
2
+DK
2
=\sqrt{6^{2}+30^{2} =6\sqrt{26}
2.2 Так же как и в пункте 2.1: BD=\sqrt{DC^{2}+BC^{2} }
DC
2
+BC
2
=\sqrt{34^{2}+6^{2} }
34
2
+6
2
=2\sqrt{298}2
298
Объяснение:
это правильно можно корону чтобы я мог перити на следующий уровень просто уменя день рождения
Объяснение:
Войти
РЕКЛАМА
Салют, Сбер! Переведи деньги
Делайте переводы голосом в моб приложении СберБанк Онлайн
Перейти
АнонимМатематика13 апреля 02:40
Теплоход проходит по течению реки до пункта назначения 76км и после стоянки возвращается в пункт отправления. Найдите
скорость теплохода в неподвижной воде, если скорость течения равна3 км/ч, стоянка длится 1 час, а в пункт отправления теплоход возвращается через 20 часов после отплытия из него.
РЕКЛАМА
Салют, Сбер! Переведи деньги
Делайте переводы голосом в моб приложении СберБанк Онлайн
Перейти
ответ или решение1
Яковлев Федор
Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
76(x – 3) + 76(x + 3) = 19(x^2 – 9);
76x – 228 + 76x + 228 = 19x^2 – 171;
-19x^2 + 76x + 76x + 171 = 0;
19x^2 – 152x – 171 = 0;
D = b^2 – 4ac;
D = (- 152)^2 – 4 * 19 * (- 171) = 23104 + 12996 = 36100; √D = 190;
x = (- b ± √D)/(2a);
x1 = (152 + 190)/(2 * 19) = 342/38 = 9 (км/ч);
x2 = (152 – 190)/(2 * 19) < 0 – скорость не может быть отрицательным числом.
ответ. 9 км/ч.