Укажи для каждой функции, записанной в левом столбце, точку, записанную в правом столбце, через которую проходит график этой функции. у = 3х - 5 у = -2 y = 14 - 6x y= -1/16x y=1/11x+11
Для того, чтобы не выполняя построения найти координаты точек пересечения графиков линейных функций y = -5x + 1 и y = -4 составим и решим систему уравнений.
Система уравнений:
y = -5x + 1;
y = -4.
Значение переменной y у нас уже известно из второго уравнения системы. Теперь мы подставим в первое уравнение его и решим полученное уравнение относительно переменной x.
Очень найдите ( sin5α + sinα , если sinα = 1/√5
"решение" : * * * sinα +sinβ =2sin( (α+β)/2 ) *cos( (α - β)/2 ) * * *
sin5α + sinα = 2*sin ( (5α +α)/2 ) *cos ( (5α -α)/2 ) =
2*sin3α*cos2α =2*(3sinα - 4sin³α)* (1 -2sin²α ) = || sinα = 1/√5 || =
=2*(3 /√5 - 4 / 5√5)* (1 - 2* 1/5 ) = 2*( ( 3*5 - 4) / 5√5 )*( (5*1 -2)5 ) =
=2* (11 / 5√5) * (3/5) = 66/25√5 = 66√5 / 125
ответ: 66√5 / 125
* * * P.S. sin3α =sin(2α+α) = sin2α*cosα+ cos2α*sinα =
2sinα*cosα*cosα + (cos²α -sin²α)*sinα =sinα *(2cos²α + cos²α - sin²α) =
sinα *(3cos²α - sin²α) = sinα *( 3(1 -sin²α) - sin²α ) = 3sinα - 4sin³α * * *
ответ: (1; -4).
Объяснение:
Для того, чтобы не выполняя построения найти координаты точек пересечения графиков линейных функций y = -5x + 1 и y = -4 составим и решим систему уравнений.
Система уравнений:
y = -5x + 1;
y = -4.
Значение переменной y у нас уже известно из второго уравнения системы. Теперь мы подставим в первое уравнение его и решим полученное уравнение относительно переменной x.
Система уравнений:
-4 = -5x + 1;
y = -4.
Решаем первое уравнение системы.
5x = 1 + 4;
5x = 5;
x = 5 : 5;
x = 1.
Система уравнений:
x = 1;
y = -4.
ответ: (1; -4).