Умоляю очень надо зделаюте хотябы одно: 1. Складіть квадратне рівняння, один із коренів якого дорівнює 2, та яке буде неповним зведеним.
2. Складіть квадратне рівняння, у якого старший коефіцієнт дорівнює 4, другий дорівнює -5 , а вільний член дорівнює 0.
D=b(кв)-4ac=3(кв)-4*1*(-28)=9+112=121
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(-3-(корень)121)/2*1=(-3-11)/2=-14/2=-7
x2=(-3+(корень)121)/2*1=(-3+11)/2=8/2=4
2)Найдем дискриминант квадратного уравнения
D=b(кв)-4ac=-2(кв)-4*2*(-8)=4+64=68
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(2-(корень)68)/2*2=0,5-0,5*(корень)17~=-1,56155
x2=(2+(корень)68)/2*2=0,5+0,5*(корень)17~=2,56155
3)найдем дискриминант
D=b(кв)-4ac=-5(кв)-4*1*6=25-24=1
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(5-(корень)1)/2*1=(5-1)/2=4/2=2
x2=(5+(корень)1)/2*1=(5+1)/2=6/2=3
ax(кв)+bx+c=a(x-x1)(x-x2)
Отсюда x(кв)-5x+6=(x-2)(x-3)
4)найдем дискриминант
D=b(кв)-4ac=-1(кв)-4*(-6)*1=1+24=25
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(1-(корень)25)/2*(-6)=(1-5)/-12=-4/-12=1/3
x2=(1+(корень)25)/2*(-6)=(1+5)/-12=6/-12=-1/2
ax(кв)+bx+с=a(x-x1)(x-x2)
Отсюда -6x(кв)-x+1=-6(x-1/3)(x+1/2)
D = 49 - 4*4*3 = 49 - 48 = 1
√D = 1
x1= ( -7+1)/8 = - 6/8 = - 3/4
x2= ( -7- 1)/8 = - 8/8 = -1
Тогда по теореме о разложении квадратного трехчлена на множители
4x² + 7x + 3=4(х +1)(х + 3/4)
2) x² + bx +4 = 0
1. Предположим, что уравнение имеет два различных корня, один из которых равен 3, тогда по теореме Виета:
х1 +х2 = - b => 3 + х2 = -b => х2 = -b - 3 =>
х1*х2 = 4 3*х2 = 4 х2 = 4/3
( пусть х1=3 )
=> -b - 3 = 4/3
-b = 4/3 + 3
-b = 4 1/3
b = - 4 1/3 => при b = - 4 1/3 уравнение имеет два корня, один из которых равен 3.
2.Уравнение имеет два различных корня, если D>0,
D = b² - 4*1*4 = b² - 16
b² - 16 > 0
(b - 4)(b + 4) > 0
b < -4 или b > 4
Уравнение имеет два различных корня, если b < -4 или b > 4.