50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.
50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.
b2 - второй член
b3 - третий член
q - знаменатель геометрической прогрессии
b1+b2=15
b2+b3= -30
q=b2/b1 = b3/b2. Из этого следует, что b2=b1*q, b3= b2*q= b1*q^2
Решим систему уравнений:
1) b1 + b1*q = 15
2) b1*q + b1*q^2= -30, что равносильно b1*q( 1+q)= -30
Выразим b1: b1= 15/(1+q) и подставим во второе уравнение
15 q/(1+q) *( 1+q)= -30
15q= -30
q = -2
b1 - 2b1 = 15
-b1 = 15
b1 = -15; b2= -15*(-2)=30; b3 = 30* (-2) = -60
Надеюсь, решение понятно.
P.S Ещё не научился вводить знаки степени и дроби. Удачи!