В викторине участвуют 24 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых 17 играх победила команда А. Какова вероятность того, что эта команда выиграет 18 раунд?.
скорость пешехода = 5 км/ч
скорость велосипедиста = 12,5 км/ч
Объяснение:
S = v × t,
S - путь
v - скорость
t - время
для пешехода:
S1 = v1 × t1
для велосипедиста:
S2 = v2 × t2
по условию задачи:
1. пешеход и велосипедист преодолели один путь, значит
S1 = S2 = 15 км
2. скорость пешехода и велосипедиста связаны как
v1 × 2,5 = v2
3. пешеход и велосипедист прибыли одновременно, но велосипедист был в пути на 1 час 48 минут меньше, чем пешеход, значит
t2 = t1 - 1 час 48 минут
переведем 1 час 48 минут в часы:
1 час 48 минут = 1 48/60 = 1,8 часа,
тогда
t2 = t1 - 1,8
составим систему уравнений:
S1 = v1 × t1
S2 = v2 × t2
подставим то, что знаем:
15 = v1 × t1
15 = 2,5 × v1 × (t1 - 1,8)
мы получили систему уравнений: 2 уравнения с 2 неизвестными
найдем v1:
перепишем второе уравнение:
15 = 2,5 x v1 × t1 - 2,5 × v1 × 1,8
15 = 2,5 x v1 × t1 - 4,5 × v1
из первого уравнения:
v1 = 15/t1
подставим во второе уравнение:
15 = 2,5 × 15/t1 × t1 - 4,5 × v1
15 = 2,5 × 15 - 4,5 × v1
15 = 37,5 - 4,5 × v1
4,5 × v1 = 37,5 - 15
4,5 × v1 = 22,5
v1 = 22,5/4,5
v1 = 5
нет необходимости решать всю систему (то есть находить и t1), мы нашли v1:
v1 = 5 км/ч
S измерено в километрах, t в часах, значит скорость в км/ч
подставим в
v1 × 2,5 = v2
получим
v2 = 5 × 2,5 = 12,5
v2 = 12,5 км/ч
скорость пешехода = 5 км/ч
скорость велосипедиста = 12,5 км/ч
1)=2x^2+x-6x-3=2x^2-5x-3
2)=20a^2+24ab-35ab-42b^2=20a^2-11ab-42b^2
3)=y^3+y^2-8y+2y^2+2y-16=y^3+3y^2-6y-16
4)a^2+14a+49
5)9x^2-24xy+16y^2
6)m^2+6m-6m-36=m^2-36
7)40ab-25a^2+64b^2-40ab=-25a^+64b^2
8)
Второе задание:
1)6a^2-10a-(a^2-7a-3a+21)=6a^2-10a-a^2+7a+3a-21=5a^2-21
2)x^2-6x+9-(x^2-4x-x+4)+x^2+2x-2x-4=x^2-6x+9-x^2+4x+x-4+x^2+2x-2x-4=x^2-x+1
Третье задание:
1)2x^2+14x-3x-21=2x^2+3x-8x-12+3
2x^2+14x-3x-21-2x^2-3x+8x+12-3=0
16x-12=0
16x=12
x=3/4=0,75
2)6y^2+2y-9y-3+2(y^2+5y-5y-25)=2(1-4y+4y^2)+6y
6y^2+2y-9y-3+2y^2+10y-10y-50=2-8y+8y^2+6y
6y^2+2y-9y-3+2y^2+10y-10y-50-2+8y-8y^2-6y=0
-5y-55=0
-5y=55
y=-11
Четвертое задание:
1)=5a(a-4b)
2)=7x^3(1-2x^2)
3)
Пятое задание:
1)4x^2-12x=0
D=(−12)^2−4·4·0=144−0=144=12
x1=-(-12)+12/2*4=24/8=3
X2=-(-12)-12/2*4=0/8=0
2)x^2-2x+5x-10=0
x^2+3x-10=0
D=3^2−4·1·(−10)=9+40=49=7
x1=-3+7/2*1=4/2=2
x2=-3-7/2*1=-10/2=-5
Седьмое задание:
1)3a-3b+ax-bx=3(a-b)+x(a-b)=(3+x)(a-b)
2)a^2+2ab+b^2+3a+3b=(a+b)(a+b)+3(a+b)
3)