Исследовать функцию: • Область определения функции:
• Точки пересечения с осью Ох и Оу: Точки пересечения с осью Ох: нет. Точки пересечения с осью Оу: Нет. • Периодичность функции. Функция не периодическая. • Критические точки, возрастание и убывание функции: 1. Производная функции:
2. Производная равна 0.
___-__(-1)____+__(0)____-___(1)___+___
х=-1 - точка минимума х=1 - точка минимума
f(1) = 1 - Относительный минимум f(-1) = -1 - Относительный минимум
Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).
1) Укажите первообразную для функции f(x)=3 cos 3x+1/2 sin x/2, график которой проходит через точку А(π/2; -2/3) Общий вид первообразных для данной функции: F(x) = Sin3x-Cosx/2 + C A(π/2; -2/3) подставим эти координаты, чтобы найти С -2/3 = Sin(3*π/2) - Cosπ/4 + C -2/3 = -1 -√2/2 + С С = -2/3 +1 +√2/2 = 1/3 + √2/2 ответ:F(x) = Sin3x-Cosx/2 + 1/3 + √2/2 2) Найдите площадь фигуры, ограниченную линиями y=5-x^2, y=3-x. Решение: Ищем пределы интегрирования: 5 - х² = 3 - х х² -х -2 = 0 по т. Виета корни 2 и -1 S₁ = ₋₁²∫(5 - x²)dx = (5x -x³/3)| в пределах от -1 до 2 = 10 -8/3 - (-5 +1/3)= =10 -8/3 +5 -1/3 = 12 S₂ = ₋₁²∫(3 -x) dx = (3x -x²/2)| в пределах от -1 до 2= =6 - 2 - (-3 -1/2) = 4 +3 +1/2 = 7,5 S фиг. = 12 - 7,5 = 4,5
• Область определения функции:
• Точки пересечения с осью Ох и Оу:
Точки пересечения с осью Ох: нет.
Точки пересечения с осью Оу: Нет.
• Периодичность функции.
Функция не периодическая.
• Критические точки, возрастание и убывание функции:
1. Производная функции:
2. Производная равна 0.
___-__(-1)____+__(0)____-___(1)___+___
х=-1 - точка минимума
х=1 - точка минимума
f(1) = 1 - Относительный минимум
f(-1) = -1 - Относительный минимум
Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).
• Точка перегиба:
Очевидно что точки перегиба нет, т.к.
• Вертикальные асимптоты:
• Горизонтальные асимптоты:
• Наклонные асимптоты:
График приложен
Общий вид первообразных для данной функции:
F(x) = Sin3x-Cosx/2 + C
A(π/2; -2/3) подставим эти координаты, чтобы найти С
-2/3 = Sin(3*π/2) - Cosπ/4 + C
-2/3 = -1 -√2/2 + С
С = -2/3 +1 +√2/2 = 1/3 + √2/2
ответ:F(x) = Sin3x-Cosx/2 + 1/3 + √2/2
2) Найдите площадь фигуры, ограниченную линиями y=5-x^2, y=3-x.
Решение:
Ищем пределы интегрирования:
5 - х² = 3 - х
х² -х -2 = 0
по т. Виета корни 2 и -1
S₁ = ₋₁²∫(5 - x²)dx = (5x -x³/3)| в пределах от -1 до 2 = 10 -8/3 - (-5 +1/3)=
=10 -8/3 +5 -1/3 = 12
S₂ = ₋₁²∫(3 -x) dx = (3x -x²/2)| в пределах от -1 до 2=
=6 - 2 - (-3 -1/2) = 4 +3 +1/2 = 7,5
S фиг. = 12 - 7,5 = 4,5