y = 7x - 6sinx + 8
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8
Биквадратное уравнение.
Решается заменой переменной:
Если D >0, т.е.
уравнение имеет корни:
или
Обратный переход:
Уравнение x^2=с имеет корни, если c> 0, тогда корни противоположны по знаку
Чтобы корни данного уравнения были равны,
с=0
Это иррациональное уравнение.
При (3a+1) >0 оно не имеет корней.
При (3а+1) ≤0
возводим обе части уравнения в квадрат:
0=1 - неверно, нет таких значений а
Аналогично
При (3a+1) < 0 оно не имеет корней.
При (3а+1) ≥0
Если , т.е
При
уравнение принимает вид:
⇒
уравнение не имеет корней
Уравнение 4-ой степени, значит
и
О т в е т. При
y = 7x - 6sinx + 8
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8
Биквадратное уравнение.
Решается заменой переменной:
Если D >0, т.е.
уравнение имеет корни:
или
Обратный переход:
или
Уравнение x^2=с имеет корни, если c> 0, тогда корни противоположны по знаку
Чтобы корни данного уравнения были равны,
с=0
Это иррациональное уравнение.
При (3a+1) >0 оно не имеет корней.
При (3а+1) ≤0
возводим обе части уравнения в квадрат:
0=1 - неверно, нет таких значений а
Аналогично
При (3a+1) < 0 оно не имеет корней.
При (3а+1) ≥0
возводим обе части уравнения в квадрат:
0=1 - неверно, нет таких значений а
Если , т.е
или
При
уравнение принимает вид:
⇒
уравнение не имеет корней
При
уравнение принимает вид:
⇒
Уравнение 4-ой степени, значит
и
О т в е т. При