Всоюзе рыжих состоит 20 членов, 12 из них , остальные . однажды, гуляя по городу, , состоявший в союзе рыжих, встретил по очереди двух других членов союза.
найдите вероятность того, что:
1) первый встречный был также , а второй .
2) оба встречных были .
3) оба встречных были .
4) первый встречный был , а второй .
ответ: x ∈ (-∞; 0) ∪ (3; +∞) .
Сначала решим первое неравенство (методом интервалов). В первой скобке получается нуль, если подставить 3. Во второй - если подставить -6. Отмечаем эти числа на числовой оси и ставим нужные знаки (рисунок 1, в приложении). Знак неравенства строгий, поэтому все точки выколотые.
Теперь решаем второе неравенство. Нуль в числителе получается, если подставить -6 (точка закрашенная, знак неравенства нестрогий). А в знаменателе - если подставить 0 (точка выколотая, по всем правилам арифметики на нуль делить нельзя). Теперь ставим нужные знаки (рисунок 2, в приложении).
Теперь объединяем все решения двух неравенств (рисунок три, приложение) и записываем окончательный ответ:
x ∈ (-∞; 0) ∪ (3; +∞) .