Нули подмодульных выражений: x = -5; 2 x - 2 - - + [-5][2]> x x + 5 - + +
1) x ∈ (-∞; -5] y = -x + 2 + x + 5 y = 7 2) x ∈ [-5; 2] y = -x + 2 - x - 5 y = -2x - 3 Функция y = -2x - 3 убывающая. Наименьшее значение будет принимать при наибольшем x из промежутка. y(2) = -2·2 - 3 = -4 - 3 = -7 3) x ∈ [2; +∞). y = x - 2 - x - 5 y = -7
Наименьшее из всех найденных значений функции будет равно -7.
знаменатели дроби слева и справа одинаковые, на них можно дробь сократить,
но при этом надо учесть ОДЗ - они не могут быть равны 0;
х²-9=х²-3²=(х-3)(х+3) не равно 0,
значит,
ОДЗ х не равно -3 и х не равно +3;
осталось приравнять числители и найти корни
х²=12-х;
х²+х-12=0;
по т Виета
х1+х2=-1;
х1·х2=-12;
решается такое устно
х1=-4;
х2=3 по ОДЗ не подходит
5/(x - 3) - 8/x=3 домножим все на x(x-3) неравное 0
получаем
5x - 8(x -3)=3x(x-3)
5x - 8x+24=3x^2 - 9x
- 3x+24 - 3x^2 +9x=0
- 3x^2 +6x +24=0
x^2 - 2x-8=0
получили квадратное уравнение, решаем через дискриминант
D=4+4*8=36 >0, 2 корня
x1=(2+6)/2=4
x2=(2 - 6)/2= - 2
Из А в В ехал x км/ч. Затратил 48/x ч. Обратно ехал (x+4) км/ч, затратил 40/(x+4) ч, что на 1 ч меньше, то есть
Второй корень не подходит по смыслу. Значит, из А в В велосипедист ехал со скоростью 16 км/ч.
x = -5; 2
x - 2 - - +
[-5][2]> x
x + 5 - + +
1) x ∈ (-∞; -5]
y = -x + 2 + x + 5
y = 7
2) x ∈ [-5; 2]
y = -x + 2 - x - 5
y = -2x - 3
Функция y = -2x - 3 убывающая. Наименьшее значение будет принимать при наибольшем x из промежутка.
y(2) = -2·2 - 3 = -4 - 3 = -7
3) x ∈ [2; +∞).
y = x - 2 - x - 5
y = -7
Наименьшее из всех найденных значений функции будет равно -7.
ответ: ymin = -7.