аким образом, чтобы выяснить, принадлежит ли графику функции точка, надо подставить координаты точки в формулу функции. Если получится верное числовое равенство, точка лежит на графике.
Примеры.
1) Принадлежат ли графику функции y=10x-3 точки A(-2; 17) и B(1; 7)?
График функции проходит через точки A и B, если их координаты обращают формулу y=10x-3 в верное числовое равенство.
A(-2; 17).
Подставляем в формулу функции вместо y ординату точки A (y=17), а вместо x — абсциссу (x=-2). Имеем:
Значит, точка A графику функции y=10x-3 не принадлежит.
B(1; 7).
Ординату 7 точки B подставляем в формулу функции y=10x-3 вместо y, абсциссу 1 — вместо x. Имеем:
Следовательно, точка B принадлежит графику функции y=10x-3.
ответ: точка B принадлежит графику функции, точка A — не принадлежит.
2) Какие из точек A(2;15), B(-1;-15), C(-10; 243) принадлежат графику функции y=3x²+5x-7?
В формулу функции y=3x²+5x-7 вместо y подставляем ординату точки, вместо каждого x — абсциссу.
Не нужно раскрывать знак модуля. Строим поэтапно: 1)у = х + 3 - прямая 2)у = |x + 3|- отражаем часть графика, расположенную ниже оси Ох симметрично оси ох . 3)у= - |x + 3|- отражаем весь график y = |x + 3| симметрично относительно оси Ох. 4)у=1-|x+3| параллельный перенос графика у= - |x + 3| на 1 единицу вверх. 5)у=| 1 - | x + 3 || - часть графика у=1-|x+3| расположенную ниже оси Ох отражаем симметрично относительно оси ох вверх.
Раскрываем модуль Если х+3≥0, то |x+3|=x+3 Это и означает, что при х≥-3 строим график у=х+3 Если х+3 < 0, то |x+3|=-(x+3) Это означает, что при х < -3 строим график у=-х-3 ( отражаем симметрично оси Ох часть графика у=х+3 расположенную ниже оси Ох) Если 1-|x+3|≥0, то есть |x+3| ≤ 1 или -1 ≤ х+3 ≤ 1 или -4 ≤x ≤ -2 |1-|x+3||=1-|x+3| Это означает, что на [-4;-2] строим график у=1-|x+3|, который в свою очередь состоит из двух участков На [-4;-3) |x+3|=-x-3 поэтому у=1+х+3=х+4 На [-3;-2] |x+3|=x+3 у=1-х-3=-х-2
Если 1-|x+3|< 0, то есть опять два случая |x+3| > 1 или х+3>1 у=-1+|x+3| На (-∞;-4) |x+3|=-x-3, поэтому у=-1-х-3=-х-4 На (-2;+∞) |x+3|=x+3, поэтому у=-1+х+3=х+2 О т в е т. {-x-4, если х < - 4; {x+4, если -4≤х<-3; |1-|x+3||= {-х-2, если -3≤x≤-2; { x+2, если x>-2 cм. рис. 5
аким образом, чтобы выяснить, принадлежит ли графику функции точка, надо подставить координаты точки в формулу функции. Если получится верное числовое равенство, точка лежит на графике.
Примеры.
1) Принадлежат ли графику функции y=10x-3 точки A(-2; 17) и B(1; 7)?
График функции проходит через точки A и B, если их координаты обращают формулу y=10x-3 в верное числовое равенство.
A(-2; 17).
Подставляем в формулу функции вместо y ординату точки A (y=17), а вместо x — абсциссу (x=-2). Имеем:
Значит, точка A графику функции y=10x-3 не принадлежит.
B(1; 7).
Ординату 7 точки B подставляем в формулу функции y=10x-3 вместо y, абсциссу 1 — вместо x. Имеем:
Следовательно, точка B принадлежит графику функции y=10x-3.
ответ: точка B принадлежит графику функции, точка A — не принадлежит.
2) Какие из точек A(2;15), B(-1;-15), C(-10; 243) принадлежат графику функции y=3x²+5x-7?
В формулу функции y=3x²+5x-7 вместо y подставляем ординату точки, вместо каждого x — абсциссу.
A(2;15)
B(-1;-15)
C(-10; 243)
Строим поэтапно:
1)у = х + 3 - прямая
2)у = |x + 3|- отражаем часть графика, расположенную ниже оси Ох симметрично оси ох .
3)у= - |x + 3|- отражаем весь график y = |x + 3| симметрично относительно оси Ох.
4)у=1-|x+3| параллельный перенос графика у= - |x + 3| на 1 единицу вверх.
5)у=| 1 - | x + 3 || - часть графика у=1-|x+3| расположенную ниже оси Ох отражаем симметрично относительно оси ох вверх.
Раскрываем модуль
Если х+3≥0, то |x+3|=x+3
Это и означает, что при х≥-3 строим график у=х+3
Если х+3 < 0, то |x+3|=-(x+3)
Это означает, что при х < -3 строим график у=-х-3 ( отражаем симметрично оси Ох часть графика у=х+3 расположенную ниже оси Ох)
Если 1-|x+3|≥0, то есть |x+3| ≤ 1 или -1 ≤ х+3 ≤ 1 или -4 ≤x ≤ -2
|1-|x+3||=1-|x+3|
Это означает, что на [-4;-2] строим график у=1-|x+3|, который в свою очередь состоит из двух участков
На [-4;-3) |x+3|=-x-3 поэтому у=1+х+3=х+4
На [-3;-2] |x+3|=x+3 у=1-х-3=-х-2
Если 1-|x+3|< 0, то есть опять два случая
|x+3| > 1 или х+3>1
у=-1+|x+3|
На (-∞;-4) |x+3|=-x-3, поэтому у=-1-х-3=-х-4
На (-2;+∞) |x+3|=x+3, поэтому у=-1+х+3=х+2
О т в е т.
{-x-4, если х < - 4;
{x+4, если -4≤х<-3;
|1-|x+3||= {-х-2, если -3≤x≤-2;
{ x+2, если x>-2
cм. рис. 5