1) x^2*x^m - икс в квадрате умноженное на икс в m степени = х^(2+m) - икс в степени 2 + m 2) x^m * x - икс в степени m умноженное на икс = х^(m+1) - икс в cтепени m + 1 3) (x^2) в n степени - (икс в квадрате) в n степени = x^(2*n) - икс в степени 2n 4) (x^n)^3 - (икс в n степени) в кубе = х^(n*3) - икс в степени 3n 5) (x^3) в n степени - (икс в кубе) в n степени = х^(3*n) - икс в степени 3n 6) (x^7 : x^3) в n степени - (икс в 7 степени делённое на икс в кубе) в степени n = (х^4) в степени n = х^(4*n) - икс в степени 4n
2) x^m * x - икс в степени m умноженное на икс = х^(m+1) - икс в cтепени m + 1
3) (x^2) в n степени - (икс в квадрате) в n степени = x^(2*n) - икс в степени 2n
4) (x^n)^3 - (икс в n степени) в кубе = х^(n*3) - икс в степени 3n
5) (x^3) в n степени - (икс в кубе) в n степени = х^(3*n) - икс в степени 3n
6) (x^7 : x^3) в n степени - (икс в 7 степени делённое на икс в кубе) в степени n = (х^4) в степени n = х^(4*n) - икс в степени 4n
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай