В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Rima02
Rima02
01.04.2022 05:12 •  Алгебра

Вычислить предел: lim(sin(27*x)/(5*x^2))=? x-> 0

Показать ответ
Ответ:
oksanakrasilnikova
oksanakrasilnikova
08.10.2020 08:46
X->0 значит можно использовать эквивалентные функции:
sinx~x
sin(27x)~27x
limₓ₋₀(sin(27x)/(5x^2))=limₓ₋₀(27x/(5x^2))=(27/5)limₓ₋₀(x/x^2)=(27/5)limₓ₋₀(1/x)=∞

limₓ₋₀₋(sin(27x)/(5x^2))=limₓ₋₀₋(27x/(5x^2))=(27/5)limₓ₋₀₋(x/x^2)=(27/5)limₓ₋₀₋(1/x)= -∞

limₓ₋₀₊(sin(27x)/(5x^2))=limₓ₋₀₊(27x/(5x^2))=(27/5)limₓ₋₀₊(x/x^2)=(27/5)limₓ₋₀₊(1/x)=+∞
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота