Пусть d - расстояние между окружностями R - радиус большей окружности r - радиус меньшей окружности 1) Если d > R+r, то окружности не пересекаются 2) Если d = R+r, то окружности касаются внешним образом 3) Если R-r < d < R+r, то окружности пересекаются в двух точках 4) Если d = R-r, то окружности касаются внутренним образом, а в случае, если R=r, они совпадают 5) Если d < R-r, то окружность с меньшим радиусом находится внутри окружности с большим радиусом, то есть они не пересекаются. ____________________ Данная задача подходит под случай 4 с различными радиусами. R=12 см, r=8 см, d = 4 см. d=R-r => окружности касаются внутренним образом. На рисунке O1- центр большей окружности, O2 - центр меньшей окружности, отрезок O1O2 - расстояние между центрами
(3n+1)(3n-1)=(3n)² - 1²=9n² -1
ответ: В)
2)
(4x-1)²=(4x)² - 2*4x*1 +1²=16x² - 8x +1
ответ: Б)
3)
4a² - 25=(2a)² - 5²=(2a-5)(2a+5)
ответ: B)
4)
-0.09x⁴ + 81y¹⁶ = 81y¹⁶ - 0.09x⁴ = (9y⁸)² - (0.3x²)²=(9y⁸ - 0.3x²)(9y⁸+0.3x²)=
ответ: В)
5)
В) a² -4b²=(a-2b)(a+2b)
ответ: В)
6)
a² - 8a+16=(a-4)²
ответ: Б)
7)
ответ: Б)
8)
(x+8)(x-8)-x(x-6)=x² -64 - x² +6x=6x-64
ответ: Г)
9)
(7m-2)² - (7m-1)(7m+1)=49m² -28m+4 - 49m² +1= -28m+5
ответ: В)
10)
(c-4)² - (3-c)²=(c-4-3+c)(c-4+3-c)=-1(2c-7)= -2c+7=7-2c
ответ: Б)
11)
(x-4)² + 2(4+x)(4-x)+(x+4)² = (x-4)² -2(x+4)(x-4)+(x+4)²=
=(x-4-(x+4))²=(x-4-x-4)²=(-8)²=64
ответ: А)
12)
(4+a²)(a-2)(a+2)=(a²+4)(a²-4)=a⁴-16
ответ: Г)
R - радиус большей окружности
r - радиус меньшей окружности
1) Если d > R+r, то окружности не пересекаются
2) Если d = R+r, то окружности касаются внешним образом
3) Если R-r < d < R+r, то окружности пересекаются в двух точках
4) Если d = R-r, то окружности касаются внутренним образом, а в случае, если R=r, они совпадают
5) Если d < R-r, то окружность с меньшим радиусом находится внутри окружности с большим радиусом, то есть они не пересекаются.
____________________
Данная задача подходит под случай 4 с различными радиусами. R=12 см, r=8 см, d = 4 см. d=R-r => окружности касаются внутренним образом.
На рисунке O1- центр большей окружности, O2 - центр меньшей окружности, отрезок O1O2 - расстояние между центрами