В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
toster1336
toster1336
13.06.2020 14:44 •  Алгебра

Вычислите x1^3+x2^3,где x1 и x2 корни уравнения x^2+x-5=0

Показать ответ
Ответ:
kydaxtaxtax
kydaxtaxtax
01.09.2020 06:48
x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=(x_1+x_2)([x_1+x_2]^2-3x_1x_2)

итак, нам надо вычислить значения выражения (x_1+x_2)([x_1+x_2]^2-3x_1x_2)

вспоминаем о теореме Виета, гласящей, что корни квадратного уравнения ax^2+bx+c=0,a=1 составляют следующие равенства, объединённые между собой: \left[\begin{array}{ccc}x_1+x_2=-b\\x_1x_2=c\end{array}\right

напишем совокупность равенств для исходного квадратного уравнения: \left[\begin{array}{ccc}x_1+x_2=-1\\x_1x_2=-5\end{array}\right

а теперь подставляем: (x_1+x_2)([x_1+x_2]^2-3x_1x_2)=(-1)([-1]^2-3*(-5))=-16

ответ: –16
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота