Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
За три года прибыль составит:
3•( рх–(0,5х²+2х+6)).Так как за это время должно окупиться строительство нового цеха, то эта прибыль должна быть не менее 78млн. руб.
Составим неравенство:
3•( рх–(0,5х²+2х+6)) ≥ 78.
Запишем неравенство для р.
После преобразований получим: р≥(0,5х)+2+(32/х) .
Наименьшее значение р=0,5х+2+(32/х) .
Найдем при каком х оно достигается.
Применяем производную.
р`(x)=(0,5х+4+(32/x) )'=0,5–(32/x²).
р`=0.
Найдем критическую точку: 0,5– (32/x²) =0.
х=8 или х=–8(отрицательное значение не удовл. условию, х – натуральное число).
Вычислим наименьшее значение р при х=8
р(8) = 0,5∙8+2+(32/8) = 10.
О т в е т. р=10.
Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.