Принцип решения таких задач: по таблице тригонометрических функций находить такой угол, при котором верно задание. Можно пользоваться программой Excel, но она даёт значения в радианах, которые потом надо переводить в градусы.
1) sin X = 1/4.
Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (- 1)^k · arcsin(a) + πk, k ∈ Z (целые числа),
x = +-arc sin (1/4) + πk ≈ +- 0,25268 + πk, k ∈ Z. Для справки: величина 0,25268 - это угол в радианах, синус которого равен 1/4. В градусах это 14,47751°.
2) tg X = 2.
Общий вид решения уравнения tg x = a определяется формулой:
x = arctg(a) + πk, k ∈ Z (целые числа).
х = 1,107149 + πk, k ∈ Z. ( 1,107149 радиан = 63,43495°).
Пусть х км/ч - скорость течения реки, тогда (10 + х) км/ч - скорость лодки по течению реки, (10 - х) км/ч - скорость лодки против течения реки. 3 ч 15 мин = 3 ч + (15 : 60) ч = 3,25 ч. Уравнение:
Можно пользоваться программой Excel, но она даёт значения в радианах, которые потом надо переводить в градусы.
1) sin X = 1/4.
Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (- 1)^k · arcsin(a) + πk, k ∈ Z (целые числа),
x = +-arc sin (1/4) + πk ≈ +- 0,25268 + πk, k ∈ Z.Для справки: величина 0,25268 - это угол в радианах, синус которого равен 1/4. В градусах это 14,47751°.
2) tg X = 2.
Общий вид решения уравнения tg x = a определяется формулой:
x = arctg(a) + πk, k ∈ Z (целые числа).
х = 1,107149 + πk, k ∈ Z.( 1,107149 радиан = 63,43495°).
Пусть х км/ч - скорость течения реки, тогда (10 + х) км/ч - скорость лодки по течению реки, (10 - х) км/ч - скорость лодки против течения реки. 3 ч 15 мин = 3 ч + (15 : 60) ч = 3,25 ч. Уравнение:
18/(10+х) + 14/(10-х) = 3,25
18 · (10 - х) + 14 · (10 + х) = 3,25 · (10 + х) · (10 - х)
180 - 18х + 140 + 14х = 3,25 · (10² - х²)
320 - 4х = 325 - 3,25х²
320 - 4х - 325 + 3,25х² = 0
3,25х² - 4х - 5 = 0
D = b² - 4ac = (-4)² - 4 · 3,25 · (-5) = 16 + 65 = 81
√D = √81 = 9
х₁ = (4-9)/(2·3,25) = (-5)/6,5 = -10/13 (не подходит, так как < 0)
х₂ = (4+9)/(2·3,25) = 13/6,5 = 2
ответ: 2 км/ч - скорость течения реки.