На промежутке [ - 2 ; 0 ] функция непрерывно возрастает, поэтому на этом промежутке f min = f(-2) = 1 и f max = f(0) = 5. E(f) = [ 1 ; 5 ] на промежутке [ - 2 ; 0 ]
На промежутке ( 0; 4 ] функция y=f(x) является квадратичной. Исследуем её график, для этого сначала определим координаты вершины параболы ( х ; y ) f(x) = (x-1)² + 4 = х² - 2х + 1 + 4 = х² - 2х + 5 По формуле координат вершины: х = -b / 2a = 2 / 2 = 1 y = f(1) = 1² - 2*1 + 5 = 1 - 2 + 5 = 4 Итак, координаты вершины параболы ( х ; y ) = ( 1 ; 4 ) , а т.к. старший коэффициент квадратичной функции положителен , то ветви параболы направлены вверх, а значит на промежутке ( 0; 4 ] f min = f(1) = 4 , а f max = f(4) = 4² - 2*4 + 5 = 16 - 8 + 5 = 13.
E(f) = [ 4 ; 13 ] на промежутке ( 0; 4 ]
Значит на всей области определения E(f) = [ 1 ; 13 ]
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
а)y=6/x-2
x-2 ≠ 0
x ≠ 2
D(f) = ( - oo ; 2 ) ∨ ( 2 ; + oo )
б)y=1/корень из 6-3x
6-3x > 0
-3x > - 6 | : ( -3)
х < 2
D(f) = ( - oo ; 2 )
в)y=корень из x^2-3x-4
x² - 3 x- 4 ≥ 0
x² - 3 x- 4 =0
х1+х2 = 3
х1х2 = -4
х1 = -1 , х2 = 4
D(f) = ( - oo ; -1 ) ∨ ( 4 ; + oo )
2. Дана функция y=f(x),где
f(x) = 2x+5, если -2
(x-1)² + 4 ,если 0< x
а) вычислите:f(-2), f(0), f(1), f(3)
f(-2) = 2*(-2) + 5 = -4 + 5 = 1
f(0) = 2*0 + 5 = 0 + 5 = 5
f(1) = (1-1)² + 4 = 0 + 4 = 4
f(3) = (3-1)² + 4 =4 + 4 = 8
б) найдите D(f) и E(f)
D(f) = [ - 2 ; 4 ]
На промежутке [ - 2 ; 0 ] функция непрерывно возрастает, поэтому на этом промежутке f min = f(-2) = 1 и f max = f(0) = 5.
E(f) = [ 1 ; 5 ] на промежутке [ - 2 ; 0 ]
На промежутке ( 0; 4 ] функция y=f(x) является квадратичной.
Исследуем её график, для этого сначала определим координаты вершины параболы ( х ; y )
f(x) = (x-1)² + 4 = х² - 2х + 1 + 4 = х² - 2х + 5
По формуле координат вершины: х = -b / 2a = 2 / 2 = 1
y = f(1) = 1² - 2*1 + 5 = 1 - 2 + 5 = 4
Итак, координаты вершины параболы ( х ; y ) = ( 1 ; 4 ) , а т.к. старший коэффициент квадратичной функции положителен , то ветви параболы направлены вверх, а значит на промежутке ( 0; 4 ] f min = f(1) = 4 , а
f max = f(4) = 4² - 2*4 + 5 = 16 - 8 + 5 = 13.
E(f) = [ 4 ; 13 ] на промежутке ( 0; 4 ]
Значит на всей области определения E(f) = [ 1 ; 13 ]