В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dosmailovadlet
dosmailovadlet
19.10.2021 05:28 •  Алгебра

Знайти три які-небудь розв’язки рівняння 4х + 5у = 20

Показать ответ
Ответ:
joryk2012
joryk2012
22.04.2022 23:53

для начала находим корни данного в условии уравнения x^2-3x+1=0

D=9-4=13

x1=[3+кореньиз(13)]/2   

x2=[3-кореньиз(13)]/2

Составьте уравнение корни которого на  1 больше корней уравнени:

Наши новые корни X=x1+1 и X=x2+1   получаем X=[5+кореньиз(13)]/2   

                                                                                           X=[5-кореньиз(13)]/2  

Воспользуемся теоремой Виета ,которая говорит нам: x^2+px+q=0

                                                                                                         x1+x2=-p

                                                                                                         x1*x2=q 

Подставим в эту теорему наши новые корни (которые на 1 больше старых ):

[5+кореньиз(13)]/2+[5-кореньиз(13)]/2=-p

[5+кореньиз(13)]/2*[5-кореньиз(13)]/2=q  

Таким образом наше квадратное уравнение (которое просят составить в условии) примет вид : x^2-5x+[(25-13)]/2=0-->> конечный вид x^2-5x+6=0

0,0(0 оценок)
Ответ:
petrgulyaev06
petrgulyaev06
21.01.2022 14:24

1) проверяем условие при наименьшем возможном значении n.

n>5, значит проверяем условие при n=6

2^66^2 \\ 6436

Верно!

2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:

2^kk^2

3) Тогда при n=k+1 должно выполняться неравенство:

2^{k+1}(k+1)^2

Вернемся к неравенству из второго пункта и домножим его на 2:

2^kk^2 \ |*2 \\ 2*2^k2k^2 \\ 2^{k+1}2k^2

Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:

2k^2(k+1)^2 \\ 2k^2k^2+2k+1 \\ k^2-2k-10 \\ \\ k^2-2k-1=0 \\ D=2^2+4*1=8=(2\sqrt{2})^2 \\ \\ k_{1,2}=\frac{2 \pm2\sqrt{2}}{2}=1 \pm \sqrt{2} \\ \\ +++(1-\sqrt{2})---(1+\sqrt{2})+++_k

по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при  k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)

Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5

Если 2^{k+1}2k^2, а 2k^2(k+1)^2 , при k>5

То есть, 2^{k+1}2k^2(k+1)^2 , при k>5, то по закону транзитивности:

2^{k+1}(k+1)^2 , при k>5 - ч.т.д

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота