В верхней точке скорость тела становится равной нулю, а потом тело начинает движение вниз. Время, через которое скорость по модулю снова станет равной υ_0, будет складываться из времени t_1 и времени t_2:
Чтобы найти расстояние S, нужно из расстояния s' (перемещение тела при спуске) отнять расстояние s (перемещение тела при подъёме). s < s', т.к. a_1 по модулю > а_2. Итак:
S = s' - s
s = υ_0²/(2*a_1)
s' = a_2*t_2²/2 = a_2*(υ_0/a_2)²/2 = υ_0²/(2*a_2) => S = [υ_0²/(2*a_2)] - [υ_0²/(2*a_1)] = [5²/(2*10*(0,5 - 0,5*√3/2))] - [5²/(2*10*(0,5 + 0,5*√3/2))] = 17,32... = 17 м
Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.
Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного. Это отклонение принято называть ошибкой измерения.[1] Возможно лишь оценить величину этого отклонения, например, при статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него[1]. Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность. Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %.
Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как «неопределённость измерения». В то же время иногда, особенно в физике, термин «погрешность измерения» (англ. measurement error) используется как синоним термина «неопределённость измерения» (англ. measurement uncertainty)[2].
Дано:
α = 30°
υ_0 = 5 м/с
μ = 0,5
g = 10 м/с²
τ, S - ?
При подъёме тело движется с торможением, равным:
mg*sinα + μ*mg*cosα = m*a_1 | : m
g*(sinα + μ*cosα) = a_1
При спуске ускорение равно:
mg*sinα - μ*mg*cosα = m*a_2 | : m
g*(sinα - μ*cosα) = a_2
В верхней точке скорость тела становится равной нулю, а потом тело начинает движение вниз. Время, через которое скорость по модулю снова станет равной υ_0, будет складываться из времени t_1 и времени t_2:
τ = t_1 + t_2
υ = υ_0 - a_1*t_1, υ = 0 => υ_0 = a_1*t_1 =>
=> t_1 = υ_0/a_1
υ' = υ_0' + a_2*t_2, υ_0' = 0, υ' = υ_0 =>
=> t_2 = υ_0/a_2
τ = t_1 + t_2 = (υ_0/a_1) + (υ_0/a_2) = υ_0/(g*(sinα + μ*cosα)) + υ_0/(g*(sinα - μ*cosα)) = 5/(10*(0,5 + 0,5*√3/2)) = 5/(10*(0,5 - 0,5*√3/2)) = 8 с
Чтобы найти расстояние S, нужно из расстояния s' (перемещение тела при спуске) отнять расстояние s (перемещение тела при подъёме). s < s', т.к. a_1 по модулю > а_2. Итак:
S = s' - s
s = υ_0²/(2*a_1)
s' = a_2*t_2²/2 = a_2*(υ_0/a_2)²/2 = υ_0²/(2*a_2) => S = [υ_0²/(2*a_2)] - [υ_0²/(2*a_1)] = [5²/(2*10*(0,5 - 0,5*√3/2))] - [5²/(2*10*(0,5 + 0,5*√3/2))] = 17,32... = 17 м
ответ: 8 с, 17 м.
на держи, не знаю правильно это или нет
Объяснение:
Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.
Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного. Это отклонение принято называть ошибкой измерения.[1] Возможно лишь оценить величину этого отклонения, например, при статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него[1]. Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность. Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %.
Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как «неопределённость измерения». В то же время иногда, особенно в физике, термин «погрешность измерения» (англ. measurement error) используется как синоним термина «неопределённость измерения» (англ. measurement uncertainty)[2].