В кубе ABCDA₁B₁C₁D₁ диагонали грани A₁B₁C₁D₁ пересекаются в точке O. Назовите линейный угол двугранного угла DA₁C₁D₁
––––––––––––––––––––––
Определение: Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями.
Линейный угол-это угол образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.
Все грани куба - квадраты. Их диагонали равны, пересекаются под прямым углом и точкой пересечения делятся пополам.
Искомый угол - это угол DOD₁ между плоскостями А₁С₁D₁ и A₁C₁D, где D₁O ⊥ A₁C₁, как половина диагонали грани, а DО ⊥ А₁С₁ как наклонная, чья проекция перпендикулярна прямой ( т. о трех перпендикулярах). Плоскость DD₁O перпендикулярна граням двугранного угла.
В приложении с рисунком найдена и примерная величина этого угла ≈ 54,7°
так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
В кубе ABCDA₁B₁C₁D₁ диагонали грани A₁B₁C₁D₁ пересекаются в точке O. Назовите линейный угол двугранного угла DA₁C₁D₁
––––––––––––––––––––––
Определение: Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями.
Линейный угол-это угол образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.
Все грани куба - квадраты. Их диагонали равны, пересекаются под прямым углом и точкой пересечения делятся пополам.
Искомый угол - это угол DOD₁ между плоскостями А₁С₁D₁ и A₁C₁D, где D₁O ⊥ A₁C₁, как половина диагонали грани, а DО ⊥ А₁С₁ как наклонная, чья проекция перпендикулярна прямой ( т. о трех перпендикулярах). Плоскость DD₁O перпендикулярна граням двугранного угла.
В приложении с рисунком найдена и примерная величина этого угла ≈ 54,7°
так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
ответ 120, 120, 60, 60