1. От пересечения прямых a и b образовались углы ∠1, ∠2, ∠3 и ∠4. Начертите рисунок и найдите углы, если известно, что сумма двух противоположенных углов равна 150 степень 0
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Треугольники даны с равными попарно сторонами и углу(не между сторонами)1)если угол вас прямой то треугольники равны(попробуй построить прямоугольный треугольник по катету и гипотенузе).252)по другому никакпопытайся построить церкулем и линейкой вот чтопрямая, отложи данный угол, отложи данную сторону, проведи окружность с длиной другой стороны и заметишь, что эта окружность пересечет противоположную сторону в двух точках(два треугольника)3)можно отдельно так же рассмотреть равнобедренный треугольник. в этом случае треугольники равны(угол при основании тупым не бывает)
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).