3) Три Соединим все три вершины. Получился треугольник, две стороны которого - стороны параллелограмма, и третья - его диагональ так как, убрав у любого параллелограмма вершину, и стороны, которые проходят через нее, получаем треугольник, состоящий из двух сторон и диаг. паралл. Выбор расположения четвертой точки зависит от выбора стороны треуг., которая будет диагональю. Тогда возможны три варианта, так как у треуг. три стороны. Чтобы построить паралл. при заданной диагонали, достаточно из концов диагонали построить прямые, параллельные сторонам, лежащим против соответствующих вершин. Точка их пересечения - четвертая вершина паралл. 2) Периметр равен 10 смотри рисунок - треуг AKM - равноб так как KM || BC => KM=AK; ML = KB Тогда ML + KM = AK + KB ML+KM=5 P = 2(ML+KM)=10
1) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1 Пусть B₁C = x, тогда AB₁ = 2x x + 2x = 9 3x = 9 x = 3 B₁C = 3, AB₁ = 6 AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис. ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3 2) CO ·OD = AO · OB CO = OD = x x² = 4·25 x² = 100 x = 10 CD = 20 3) ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒ DK / KB = FD / BM = 1/2
Соединим все три вершины.
Получился треугольник, две стороны которого - стороны параллелограмма, и третья - его диагональ так как, убрав у любого параллелограмма вершину, и стороны, которые проходят через нее, получаем треугольник, состоящий из двух сторон и диаг. паралл.
Выбор расположения четвертой точки зависит от выбора стороны треуг., которая будет диагональю. Тогда возможны три варианта, так как у треуг. три стороны.
Чтобы построить паралл. при заданной диагонали, достаточно из концов диагонали построить прямые, параллельные сторонам, лежащим против соответствующих вершин. Точка их пересечения - четвертая вершина паралл.
2) Периметр равен 10
смотри рисунок - треуг AKM - равноб так как KM || BC => KM=AK;
ML = KB
Тогда ML + KM = AK + KB
ML+KM=5
P = 2(ML+KM)=10
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1
Пусть B₁C = x, тогда AB₁ = 2x
x + 2x = 9
3x = 9
x = 3
B₁C = 3, AB₁ = 6
AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис.
ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3
2)
CO ·OD = AO · OB
CO = OD = x
x² = 4·25
x² = 100
x = 10
CD = 20
3)
ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒
DK / KB = FD / BM = 1/2