1. Найти косинус наименьшего угла треугольника. Это угол С.
Напротив наименьшей стороны лежит наименьший угол. Значит, напротив угла С лежит сторона АВ=4.
Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
Для треугольника АВС:
АВ²= ВС²+АС²–2×ВС×АС×cos∠C;
4²= 5²+7²–2×5×7×cos∠C;
16= 25+49–70cos∠C;
70cos∠C= 25+49–16;
70cos∠C= 58;
cos∠C= 58/70, это приблизительно, если округлить до тысячных равно 0,829.
Записываем в ответ:
cos∠C= 0,829.
2. Если воспользоваться калькулятором и посчитать значение угла С, а потом округлить его до целых, то выйдет ∠С=34°.
а = (b*sin α)/sin β = (4,56*0,5)/0,.965926 = 2,36043.
4) c = √(a²+b²-2ab*cosγ) = √(144+64-2*12*8*0,5) = √112 = 4√7 ≈ 10,58301.
sin β = b*sin γ / c = (8*√3)/(2*4√7) = √(3/7).
β = arc sin(√(3/7)) = 40,86339°.
α = 180-60-40,86339 = 79,10661°.
6) b =√(49+100-2*7*10*(-0,5)) = √219 ≈ 14,79865.
sin α = a*sin β/b = (*√3)/(2*√219) = 0,409644.
α = arc sin 0,409644 = 24,18547°.
γ = 180-120-24,18247 = 35,81753°.
8) Применяется теорема косинусов.
α = 18,19487°,
β = 128,68219°,
γ = 33,12294°.
Решение.
1. Найти косинус наименьшего угла треугольника. Это угол С.
Напротив наименьшей стороны лежит наименьший угол. Значит, напротив угла С лежит сторона АВ=4.
Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
Для треугольника АВС:
АВ²= ВС²+АС²–2×ВС×АС×cos∠C;
4²= 5²+7²–2×5×7×cos∠C;
16= 25+49–70cos∠C;
70cos∠C= 25+49–16;
70cos∠C= 58;
cos∠C= 58/70, это приблизительно, если округлить до тысячных равно 0,829.
Записываем в ответ:
cos∠C= 0,829.
2. Если воспользоваться калькулятором и посчитать значение угла С, а потом округлить его до целых, то выйдет ∠С=34°.