8.1 Площадь равнобедренной трапеции равна: S=(a+b)/2*h, где a и b - основания трапеции (11 и 27) h - высота Отсюда, высота равна: h=S:(a+b)/2=2S:(a+b)=2*285:(11+27)=225:38=15 Т.е. BE (см. рисунок 1) = 15 AE=FD=(27-11):2=16:2=8 По теореме Пифагора: AB²=BE²+AE²=15²+8²=225+64=289 AB=√289=17 Боковая сторона трапеции равна 17. Т.к. трапеция равнобедренная, то боковые стороны равны: AB=CD=17 Периметр — это сумма боковых сторон и оснований, который равен: Р=11+27+17+17=72 ответ: периметр равен 72.
8.2. Найти высоту правильного треугольника, если радиус описанной около него окружности, равен 10 см.
R=10
т.к. ΔАВС - равносторонний, следовательно ∠А=∠В=∠С=60°
R=a/2sin60=a/√3
тогда a=R√3=10√3
h=√3/2*a=√3*a/2=√3*10√3/2=√9*10/2=3*10/2=15 ответ: высота правильного треугольника равна 15
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках Mи Nсоответственно. Найдите BN, если MN=13, AC=65, NC=28. Пусть х - длина ВN. Тогда, ВС=х+32 Составим и решим пропорцию: MN:AC=BN:BC 17/51=х/(х+32) (умножим на 51, чтобы избавиться от дроби) 17=51х/(х+32) 17*(x+32)=51x 17x+544=51x 17x-51x=-544 -34x=-544 34x=544 x=16 ответ: BN=16
1. Т.к. прямые РМ и BD лежат в одной плоскости (ABD), их надо просто продлить до пересечения. N = PM∩BD
2. РМ⊂ (ABD), CD∩(ABD) = D, D∉PM ⇒ PM и CD скрещивающиеся по признаку и, значит, не пересекаются.
3. Пусть К - середина ВС. Тогда МК║АС, как средняя линия ΔАВС. KN∩CD = L, PMKL - искомое сечение. Оно параллельно АС, т.к. МК║АС.
МК║АС, АС⊂ACD, ⇒MK║(ACD) Секущая плоскость проходит через прямую, параллельную ADC и пересекает ADC по прямой PL, значит линия пересечения параллельна АС. Т.е. PL║AC. По теореме Фалеса CL:LD = AP:PD = 3:1
S=(a+b)/2*h, где
a и b - основания трапеции (11 и 27)
h - высота
Отсюда, высота равна:
h=S:(a+b)/2=2S:(a+b)=2*285:(11+27)=225:38=15
Т.е. BE (см. рисунок 1) = 15
AE=FD=(27-11):2=16:2=8
По теореме Пифагора:
AB²=BE²+AE²=15²+8²=225+64=289
AB=√289=17
Боковая сторона трапеции равна 17. Т.к. трапеция равнобедренная, то боковые стороны равны: AB=CD=17
Периметр — это сумма боковых сторон и оснований, который равен:
Р=11+27+17+17=72
ответ: периметр равен 72.
8.2. Найти высоту правильного треугольника, если радиус описанной около него окружности, равен 10 см.
R=10
т.к. ΔАВС - равносторонний, следовательно ∠А=∠В=∠С=60°
R=a/2sin60=a/√3
тогда a=R√3=10√3
h=√3/2*a=√3*a/2=√3*10√3/2=√9*10/2=3*10/2=15ответ: высота правильного треугольника равна 15
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках Mи Nсоответственно. Найдите BN, если MN=13, AC=65, NC=28.
Пусть х - длина ВN.
Тогда, ВС=х+32
Составим и решим пропорцию:
MN:AC=BN:BC
17/51=х/(х+32) (умножим на 51, чтобы избавиться от дроби)
17=51х/(х+32)
17*(x+32)=51x
17x+544=51x
17x-51x=-544
-34x=-544
34x=544
x=16
ответ: BN=16
N = PM∩BD
2. РМ⊂ (ABD), CD∩(ABD) = D, D∉PM ⇒
PM и CD скрещивающиеся по признаку и, значит, не пересекаются.
3. Пусть К - середина ВС. Тогда МК║АС, как средняя линия ΔАВС.
KN∩CD = L, PMKL - искомое сечение. Оно параллельно АС, т.к. МК║АС.
МК║АС, АС⊂ACD, ⇒MK║(ACD)
Секущая плоскость проходит через прямую, параллельную ADC и пересекает ADC по прямой PL, значит линия пересечения параллельна АС.
Т.е. PL║AC.
По теореме Фалеса CL:LD = AP:PD = 3:1