1. Решите задачи с теорем о вписанных и описанных четы а. Один из углов трапеции, вписанной и окружность, равен 37,5°. Найдите
остальные углы трапети.
Б. Периметр равнобедренной трапеции, описаной около окружности, ранен 22
см. Найдите величину боковой стороны трапеции.
2. Периметр правильного шестиугольника равен 72 см. Найдите сго площадь.
3. Окружность радиусом 2,7 мм разбита на два сектора. Длина дуги второго сектора н
три раза больше длины дуги первого
а. Вычислите длину дуги первого сектора
ь. Вычислите площадь второго сектора
Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
А₁А₂ : В₁В₂ = АМА₂ : МВ₂
А₁А₂ : (А₁А₂+1) = 4: ( 10-4)
4(А₁А₂+1)=А₁А₂*6 ⇒ А₁А₂= 2 cм
Объяснение:
1)
В четырехугольник можно вписать окружность, если сумма противоположных сторон равна сумме двух других противоположных сторон.
МК+ЕF=ME+KF.
P=2(MK+EF)=2*40=80ед.
ответ: 80ед.
2)
АD=BC.
Две касательные проведенные из одной точки равны между собой.
АВ=2*12=24ед
DC=2*15=30ед.
ответ: АВ=24ед; DC=30ед.
3)
В четырехугольник можно вписать окружность, если сумма противоположных сторон равна сумме двух других противоположных сторон.
АВ+СD=BC+AD.
P=2(AB+CD)=2(6+9)=2*15=30ед.
ответ: 30ед.
4)
Четырехугольник можно вписать в окружность, если сумма противоположных углов равна 180°
<М+<К=180°. →
<К=180°-<К=180°-53°=127°
Аналогично для двух других углов
<Е+<N=180°
<N=180°-<E=180°-75°=105°
ответ: <К=127°; <N=105°
5)
В четырехугольник можно вписать окружность если сумма противоположных сторон равна сумме двух других противоположных сторон
MN+KL=P/2
Пусть MN=2x; KL=7x.
Уравнение
2х+7х=54/2
9х=27
х=3
МN=2x=2*3=6ед.
KL=7x=7*3=21ед.
NK=6x=6*3=18ед.
LM=(MN+KL-NK)=6+21-18=9ед.
ответ: MN=6ед; KL=21ед; NK=18ед; LM=9ед.