1.В прямоугольной трапеции ABCD ∠ABC =∠BAD = 90°, диагональ АС перпендикулярна боковой стороне CD. Найди площадь трапеции, если AB = 4.
2.В параллелограмме ABCD диагонали пересекаются в точке О. Найди площадь пятиугольника ABCDO, если сторона AB = 8, а проведённая к ней высота CH = 5.
а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
Уравнение окружности: x2+y2=72. Уравнение прямой: x+y+c=0. Найди значения коэффициента c, с которым прямая и окружность имеет одну общую точку (прямая касается окружности).
Объяснение:
x²+y²=72, x+y+c=0
у=-(х+с). Подставим в уравнение окружности .
x²+(-(х+с))²=72 , х²+х²+2сх+с²-72=0 , 2х²+2хс+(с²-72)=0. Это уравнение должно иметь одно решение ( прямая и окружность имеет одну общую точку ), значит Д=0
Д=(2с)²-4*2*(с²-72)=4с²-8с²+8*72=-4с²+8*72,
-4с²+8*72=0 , -4с²=8*72, с²=2*72, с²=144 , с=±12
ответ . -12; 12