1. высота конуса равна 96, а диаметр основания — 56. найдите образующую конуса. 2. осевое сечение цилиндра – квадрат, диагональ которого 4 см. найдите площадь боковой поверхности цилиндра. 3. радиус основания конуса равен 6 см, а образующая наклонена к плоскости основания под углом 60°. найдите площадь сечения, проходящего через две образующие, угол между которыми равен 45° и площадь боковой поверхности конуса.
3х+4х+6х=130;130=13х;х=10;
Подставляем значение х и получаем треугольник со сторонами 30см,40см и 60см.
Далее из условия узнаем ,сто нам необходимо найти длину сторон теугольника,вершинами которого являются середины сторон данного треугольника,то есть по сути стороны искомого треугольника будут средними линиями для треугольника с периметром 130см.Следовательно стороны искомого треугольника будут в два раза меньше данного ,а это соответствует числам:15см,20см ,30см
27,71 cм²
Объяснение:
1) Рассмотрим в плоскости осевого сечения прямоугольный треугольник, образованный радиусом основания, высотой и образующей.
Радиус основания и высота конуса - это катеты данного прямоугольного треугольника, а образующая - его гипотенуза.
2) В данном прямоугольном треугольнике известны 2 угла - прямой (90°) - между высотой конуса и радиусом основания и угол 60° - между образующей и радиусом основания.
Следовательно, острый угол, против которого лежит радиус основания равен:
180° (сумма внутренних углов треугольника) - 90° - 60° = 30°.
3) В прямоугольном треугольнике катет, лежащий против угла 30°, равен половине гипотенузы. Следовательно, радиус основания R равен:
R = 8 : 2 = 4 см.
4) Высоту рассчитаем по теореме Пифагора: катет равен корню квадратному из разности между квадратом гипотенузы и квадратом другого катета:
H = √(8² - 4²) = √ (64-16) = √ 48 = √ 16*3 = 4√3.
5) Осевое сечения конуса является треугольником, площадь которого равна половине произведения основания на высоту. Основание треугольника - это диаметр основания конуса, а высота треугольника - это высота конуса.
Диаметр основания конуса D равен:
D = 2 * R = 2 * 4 = 8 см.
6) Находим площадь осевого сечения S:
S = (D * H) : 2 = (8 * 4√3) : 2 = 16√3 cм².
Избавимся от иррациональности и рассчитаем значение площади с округлением до сотых (0,01).
16√3 ≈ 16 * 1,732 ≈ 27,71 cм²
ответ: 16√3 cм², или 27,71 cм².