2. Построить в системе координат треугольник А(3; 7), В(2; 5), С(7; 8). Построить в данной системе координат: a) треугольник А1В1С1 симметричный данному треугольнику относительно оси ОХ,
b) треугольник А2В2С2 симметричный данному треугольнику относительно оси ОУ,
c) треугольник А3В3С3 симметричный данному треугольнику относительно начала координат
d) записать координаты всех полученных точек
P=244 см
В ромбе все стороны равны:
244:4=61 см.
d1=120 см.
Диагонали ромба в точке их пересечения делятся пополам.
Значит, 120:2=60 см - половина диагонали.
Диагонали ромба взаимно перпендикулярны (пересекаются под прямым углом).
Прямоугольный треугольник, сторона, являющаяся гипотенузой и равная 61 см, катет (половина диагонали), равный 60 см.
По теореме Пифагора:
61^2=х^2+60^2
3721=х^2+3600
3721-х^2-3600=0(3721-3600)
121-х^2=0
(11-х)(11+х)=0
11-х=0. 11+х=0
-х=-11 х=-11, не удовлетворяет условие.
х=11-удовлетворяет условие, половина d2
11*2=22
ответ:22
7.
Что-то требование я не нахожу, так что найду все углы.
∠BOC = 137° => <COD = 180-137 = 43°
CO == CD => <COD == <CDO = 43° => <OCD = 180-(43+43) = 94°
<COD вертикален с углом <AOB => <AOB == <COD = 43°
AO == AB => <OAB & <ABO = (180-43)/2 = 68.5°.
ответ: <COD = 43°, <OCD = 94°, <AOB == <COD = 43°, <ABO == <OAB = 68.5°.
5.
<BCD = 180-120 => <BCA = 60°
AB == BC => <BAC == <BCA = 60°
<B = 180-(60+60) = 60°.
6. AB == BC => <C == <A = 50°
<B = 180-(50+50) = 80°
Предполагаю, AD — это бисектриса.
<DAC = 50/2 = 25°
<ADC = 180-(50+25) = 105°.