Центр вписанной в треугольник окружности находится в точке пересечении биссектрис треугольника. Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника. Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой. Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1, а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам, радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты, а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника. Радиус вписанной в данный треугольник окружности равен 3:3= 1см. Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см. ----------------------------------- Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.
Объяснение:
Рассмотрим 2 случая. Пусть АВ, АС будут боковыми сторонами треугольника, тогда сторона ВС будет основанием.
1 случай:
Пусть основание треугольника будет 8 см, тогда боковая сторона будет 6 см. ∆АВС - равнобедренный => боковые стороны равны АВ = АС = 6 см. Тогда:
Раbc = АВ + АС + ВС = 6 + 6 + 8 = 12 + 8 = 20 см.
2 случай:
Пусть основание треугольника будет 6 см, тогда боковая сторона будет 8 см. ∆АВС - равнобедренный => боковые стороны равны АВ = АС = 8 см. Тогда:
Раbc = АВ + АС + ВС = 8 + 8 + 6 = 16 + 6 = 22 см.
Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника.
Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой.
Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1,
а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам,
радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты,
а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника.
Радиус вписанной в данный треугольник окружности равен 3:3= 1см.
Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см.
-----------------------------------
Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.