2. В прямоугольном треугольнике ABC ZC= 90°, катеты аи b соот- ветственно равны 63 cm и 6 cm. Найдите гипотенузу с, острые углы а и в этого треугольника. Решите задачу двумя
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Объяснение:
Дано: ABCD - параллелограмм;
РК║АС
Доказать: РМ=NK
Доказательство:
1) Рассмотрим АМКС.
АМ║СК (ABCD - параллелограмм)
МК║АС (условие)
⇒ АМКС - параллелограмм (по определению)
⇒ АМ=СК (свойство параллелограмма)
2) Рассмотрим PNCA.
АP║СN (ABCD - параллелограмм)
PN║AC (условие)
⇒ PNCA- параллелограмм (по определению)
⇒ АP=СN (свойство параллелограмма)
3) Рассмотрим ΔРМА и ΔNKC
АМ=СК (п.1)
АP=СN (п.2)
∠1=∠2 - соответственные при BC║AD и секущей DK
∠3=∠2 - соответственные при AB║DK и секущей DP
⇒ ∠1=∠3
⇒ ΔРМА = ΔNKC (по двум сторонам и углу между ними)
⇒ PM=NK
∠АОВ и ∠COD вертикальные,
∠ВОС и ∠AOD вертикальные.
Проведем:
ОЕ - биссектрису ∠АОВ,
OF - биссектрису ∠СOD,
OK - биссектрису ∠BOC,
OM - биссектрису ∠AOD.
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Что и требовалось доказать.