№ 2. Із точки А до площини с проведено перпендикуляр Аб, довжина якого дорівнює 1 см, і дві рівні похилі АВ і А., ще гороють із пер- пендикуляром кути по 60°, а між собою кут <САВ, що дорівнює 90°. Знайдіть відстань між основали похилих.
два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
От квадрата со стороной a отсечены:
треугольник, равный 1/8 площади квадрата
два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
AO/OH =2/1 (AH - медиана), AO=OC (радиусы) => OC/OH =2/1.
BD⊥AC, EF⊥AC => BD||EF. По теореме Фалеса EF делит стороны BC и CD в том же отношении, что и OC, то есть пополам.
DAE= (DAB-EAF)/2 =(90-60)/2 =15
tg15 =tg(30/2) =(1-cos30)/sin30 =2(1-√3/2) =2-√3
1-б 2-а 3 в
Объяснение:
1) угол А1 смежный с углом А2, следовательно его мы можем найти так:180-110=70
Угол С мы можем найти исходя из того, что сумма углов треугольника 180:180-70-40=70
2)угол В1 смежный с углом В2, следовательно его мы можем найти так: 180-160=20
По рисунку видно что второй угол 90 градусов.
Угол А мы можем найти исходя из того, что сумма углов треугольника:180-50-90=40
3) угол С1 смежный с углом С2, следовательно его мы можем найти так:180-150=30
По рисунку видно, что треугольник равнобедренный=>, углы при основании равнв(С=А) =>В=180-(30*2)=120