20. укажите номера верных утверждений.
1) если при пересечении двух прямых третьей прямой соответственные
углы равны 37, то ти две прямые параллельны.
2) через любые три точки проходит не более одной прямой
3) сумма вертикальных углов равна 180°.
если утверждений несколько паниите по номера в порядке возрастания
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Задачи на второй признак равенства треугольников
Треугольники
Посмотрев данный видеоурок, все желающие смогут получить представление о теме «Задачи на второй признак равенства треугольников». В ходе этой лекции учащимся предстоит вспомнить, повторить и научиться применять все о втором признаке равенства треугольников. Учитель подробно разберет и решит несколько задач по этой теме.
Сначала вспомним, что две фигуры называются равными, если их можно совместить наложением. Однако очень трудно сравнивать фигуры по определению, поэтому мы введем признаки равенства треугольников – по некоторым элементам.
Объяснение: