2b) Запишите верное отношение сторон для длины AM:
Через точку М стороны КР треугольник ТКР проведена прямая параллельная стороне ТК и пересекающая
сторону TPв точке А Найдите длину AM если TK = 24см, ТА = 13 см, AP = 26 см.
2) Найдите длину AM:
Через точку М стороны КР треугольник ТКР проведена прямая, параллелная сторона стороне ТК и пересекающая
сторону ТР в точке А. Найдете длину АМ, если ТК=24см,ТА=13,АР=26см
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°
Аналогично повторяем рассуждения для треугольника AДС, и понимаем, что отрезок, соединяющий середины сторон АД и ДС есть средняя линия, значит он параллелен АС.
Итак, имеем, что обе средние линии - треугольников АВС и АДС параллельны диагонали ромба АС, следовательно они параллельны друг другу.
Повторяем те же рассуждения для второй диагонали ромба - ВД, и так же получаем параллельность второй пары отрезков.
Следовательно, четырёхугольник, вершинами которого являются середины сторон ромба, является параллелограммом.
Далее, из симметрии ромба, замечаем, что обе диагонали этого получившегося четырёхугольника проходят через центр ромба, и равны между собой.
Параллелограмм, у которого диагонали равны - это и есть прямоугольник - что и требовалось доказать.
Ну, я бы так доказывал. Может кто-нибудь предложит более простой